网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
分步锻压对汽车用AZ80 镁合金耐蚀及耐磨性能的影响
英文标题:Effect of step forging on corrosion resistance and wear resistance properties of AZ80 magnesium alloy for automobile
作者:孙忠玉1  赵越顺2 
单位:1. 辽源职业技术学院 2. 大连理工大学 
关键词:分步锻压  AZ80 镁合金  耐磨性能  耐蚀性能  组织细化 
分类号:TH164
出版年,卷(期):页码:2023,48(1):23-29
摘要:

 为了探究分步锻压对汽车用AZ80 镁合金耐蚀及耐磨性能的影响, 对均匀化处理后的Z80 镁合金分别进行了高应变速率(4×10-1 s-1) 下的一次锻压处理、先低应变速率(4×10-3 s-1) 后高应变速率(4×10-1 s-1) 的分步锻压处理, 并与锻压前试样进行了显微组织、耐蚀性能和耐磨性能的对比分析。结果表明: 在组织细化、耐蚀及耐磨性能的改善方面, 分步锻压的效果优于一次锻压。与锻压前试样相比, 一次锻压可使腐蚀电位减小1. 58%、腐蚀电流密度减小2. 77%、500 N 外加载荷条件下的磨损体积减小25. 00%, 分步锻压则可使腐蚀电位减小5. 83%、腐蚀电流密度减小7.03%、500 N 外加载荷下的磨损体积减小54. 64%。分步锻压处理是改善汽车用AZ80 镁合金耐蚀及耐磨性能的有效途径。

 In order to explore the influences of step forging on the corrosion resistance and wear resistance properties of AZ80 magnesium alloy for automobile, the homogenized AZ80 magnesium alloys were processed by the one time forging treatment at a high strain rate of 4×10-1 s-1 and the step forging treatment first at a low strain rate of 4×10-3 s-1 and then at a high strain rate of 4×10-3 s-1. Then, compared with the samples before forging, the microstructure, corrosion resistance property and wear resistance property of samples were compared and analyzed. The results show that the effect of step forging is better than that of one-time forging in terms of microstructure refinement, corrosion resistance and wear resistance improvement. Compared with the sample before forging, the one-time forging can reduce the corrosion potential by 1. 58%, the corrosion current density by 2. 77%, and the wear volume under the applied load condition of 500 N by 25. 00%. The step forging can reduce the corrosion potential by 5. 83%, the corrosion current density by 7. 03%, and the wear volume under the applied load condition of 500 N by 54. 64%. Thus, the step forging treatment is an effective way to improve the corrosion resistance and wear resistance properties of AZ80 magnesium alloy for automobile.

基金项目:
吉林省教育厅“ 十三五” 科学技术研究项目(JJKH20181388KJ)
作者简介:
作者简介: 孙忠玉(1975-), 女, 学士, 副教授 E-mail: na5341@ 163. com
参考文献:

 [1]  Jia X J, Song J F, Qu X Q, et al. Effect of scratch on corrosion resistance of calcium phosphate conversion coated AZ80 magnesium alloy [J]. Transactions of Nonferrous Metals Society of China, 2022, 32 (1): 147-161.


[2]  Fan L L, Zhou M Y, Guo Y Y, et al. Effect of ECAP process on liquid distribution of AZ80M alloy during semi-solid isothermal heat treatment [J]. Transactions of Nonferrous Metals Society of China, 2021, 31 (6): 1599-1611.

[3]  Zhang D D, Liu C M, Wan Y C, et al. Microstructure and anisotropy of mechanical properties in ring rolled AZ80-Ag alloy [J]. Journal of Central South University, 2021, 28 ( 5): 1316 -

1323.

[4]  李忠盛, 吴护林, 丁星星, 等. AZ80 镁合金表面冷喷涂铝/微弧氧化复合涂层耐蚀性能[ J]. 材料工程, 2021, 49(12): 57-64.

Li Z S, Wu H L, Ding X X, et al. Corrosion resistance of cold sprayed aluminum/ micro-arc oxidation composite coating on AZ80 magnesium alloy [J]. Journal of Materials Engineering, 2021, 49 (12): 57-64.

[5]  李全, 金朝阳. 物理基本构模型和BP 人工神经网络模型预测AZ80 镁合金高温流动应力的比较研究[J]. 稀有金属材料与工程, 2021, 50 (11): 3924-3933.


Li Q, Jin C Y. Comparative study of physical-based constitutive model and BP artificial neural network model in predicting high temperature flow stress of az80 magnesium alloy [J]. Rare Metal Materials and Engineering, 2021, 50 (11): 3924-3933.

[6]  何舒阳, 杨素媛. Mg-Y-Zn 合金高应变率下LPSO 结构的变形机制[J]. 稀有金属, 2021, 45 (3): 257-263.

He S Y, Yang S Y. LPSO in Mg-Y-Zn alloy deformation mechanism under high strain rate [J]. Chinese Journal of Rare Metals,2021, 45 (3): 257-263.

[7]  高植, 孟模, 张治民, 等. 固溶参数对Mg-13Gd-4Y-2Zn-0. 6Zr合金组织及性能的影响[ J]. 稀有金属, 2021, 45 (6):657-663.

Gao Z, Meng M, Zhang Z M, et al. Microstructure and properties of Mg-13Gd-4Y-2Zn-0. 6Zr alloy with different solid solution parameters [J]. Chinese Journal of Rare Metals, 2021, 45 (6):

657-663.

[8]  邓彬, 李庆芬, 吴远志, 等. 高应变速率多向锻造对AZ31 镁合金组织及耐腐蚀性能的影响[J]. 锻压技术, 2021, 46(8): 7-11, 25.

Deng B, Li Q F, Wu Y Z, et al. Influence of high strain rate multi-directional forging on microstructure and corrosion resistance property for AZ31 magnesium alloy [ J]. Forging & Stamping

Technology, 2021, 46 (8): 7-11, 25.

[9]  蒋莉萍, 王军, 肖振宇, 等. 室温多向锻压AZ31 镁合金的静态再结晶行为[ J]. 中国有色金属学报, 2015, ( 11):3051-3059.

Jiang L P, Wang J, Xiao Z Y, et al. Static recrystallization behavior of multi-directionally forged AZ31 magnesium alloy at room temperature[J]. The Chinese Journal of Nonferrous Metals, 2015,(11): 3051-3059.

[10] 邹景锋, 马立峰, 朱艳春. 径锻压下率对镁棒热力参数及组织演变的影响[J]. 精密成形工程, 2021, 13 (6): 84 -90.    

Zou J F, Ma L F, Zhu Y C. Effect of radial forging reduction rate on thermodynamic parameters and microstructure evolution of magnesium alloy bar [J]. Journal of Netshape Forming Engineering, 2021, 13 (6): 84-90.

[11] 张宗良, 刘楚明, 高永浩, 等. Mg-9Gd-3Y-0. 6Zr-0. 05Ag 镁合金模锻件微观组织及力学性能不均匀性研究[J]. 锻压技术, 2021, 46 (2): 206-212.

Zhang Z L, Liu C M, Gao Y H, et al. Study on inhomogeneity of microstructure and mechanical property for Mg-9Gd-3Y-0. 6Zr-0. 05Ag magnesium alloy die forgings [J]. Forging & Stamping Technology, 2021, 46 (2): 206-212.

[12] 余富忠, 赵强李. 多向锻造对汽车用AZ80 镁合金组织及性能的影响[J]. 锻压技术, 2021, 46 (3): 32-36.

Yu F Z, Zhao Q L. Influence of multi-directional forging on microstructure and properties for AZ80 magnesium alloy used for automobile[J]. Forging & Stamping Technology, 2021, 46 (3): 32-36.

[13] 郭俊成, 肖振宇, 杨续跃. 两步锻压提升铸态AZ80 镁合金延伸率的研究[J]. 矿冶工程, 2018, 38 (4): 144-148.

Guo J C, Xiao Z Y, Yang X Y. Enhancement of ductility for cast AZ80 Mg alloy by a two-step forging process [ J]. Mining and Metallurgical Engineering, 2018, 38 (4): 144-148.

[14] 肖振宇, 杨溢, 袁星宇, 等. 分步锻压工艺对AZ91 镁合金组织演化及力学性能的影响[J]. 中国有色金属学报, 2018,28 (11): 2173-2181.

Xiao Z Y, Yang Y, Yuan X Y, et al. Effects of interrupted forging on microstructural development and mechanical properties of cast AZ91 Mg alloy [J]. The Chinese Journal of Nonferrous Metals,2018, 28 (11): 2173-2181.

[15] 王以华. 锻模设计技术及实例[M]. 北京: 机械工业出版社, 2009.

Wang Y H. Forging Die Design Technology and Examples [M].Beijing: China Machine Press, 2009.


 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9