[1] Schafrik R E, Ward D D, Groh J R. Application of alloy 718 in GE aircraft engines: Past, present and next five years [A]. Superalloys718, 625, 706 and Various Derivatives [C]. TMS, 2001.
[2] Paulonis D F, Schirra J J. Alloy 718 at Pratt & Whitney-Historical perspective and future challenges [A]. Superalloys718, 625, 706and Various Derivatives [C]. TMS, 2001.
[3] 王妙全, 田成刚, 徐瑶, 等. 新型高温合金718Plus 的性能特点、航空应用和发展趋势[J]. 材料导报, 2017, 31 (10):72-78.
Wang M Q, Tian C G, Xu Y, et al. Performance characteristics and aerospace application and development trend of the new superalloy 718Plus [J]. Materials Reports, 2017, 31 (10): 72-78.
[4] Kennedy R L, Cao W D, Bayha T D, et al. Developments in wrought Nb containing superalloys (718+100 ℉) [A]. Niobium for High Temperature Applications [C]. TMS, Pennsylvania, 2003.
[5] Cao W D, Kennedy R L. Role of chemistry in 718 type alloys-Allvac® 718PlusTM development [A]. Presented at Superalloys 2004 [C]. TMS: Warrendale, 2004.
[6] Kennedy R L, Cao W D. New developments in wrought 718-type superalloys [ J ]. Acta Metallurgica Sinica: English Letters, 2005, 18 (1): 39-46.
[7] 王民庆, 邓群, 杜金辉, 等. ATI 718Plus 合金国内研究进展[J]. 稀有金属材料与工程, 2016, 45 (12): 3335-3340.
Wang M Q, Deng Q, Du J H, et al. Research progress of alloy ATI 718Plus in China [J]. Rare Metal Materials and Engineering, 2016, 45 (12): 3335-3340.
[8] 仉建波, 李京桉, 彭远祎, 等. ATI 718 Plus 高温合金微观组织与性能研究进展[J]. 材料导报, 2022, 36 (4): 149-156.
Zhang J B, Li J A, Peng Y Y, et al. Reviews on the study of microstructure and properties of ATI 718Plus Superalloy [J]. Materials Reports, 2022, 36 (4): 149-156.
[9] Billot T, Villechaise P, Jouiad M, et al. Creep-fatigue behavior at high temperature of a UDIMET 720 nickel-base superalloy [J]. International Journal of Fatigue, 2010, 32 (5): 824-829.
[10] Song X Q, Tang L Y, Chen Z, et al. Micro-mechanism during long-term creep of a precipitation-strengthened Ni-based superalloy [J]. Journal of Materials Science, 2017, 52 (8): 4587-4598.
[11] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li 镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34 (z1): 375-379, 384.
Xie X F, Qu J L, Du J H. Effect of mixed grain structure on high temperature stress rupture property of Ni-based GH4720Li superalloy [J]. Materials Reports, 2020, 34 (z1): 375-379, 384.
[12] 朱丽娜, 李文, 祁峰, 等. 晶粒组织对GH4169G 合金持久性能的影响[J]. 热加工工艺, 2011, 40 (16): 47-49.
Zhu L N, Li W, Qi F, et al. Effect of grain microstructure on stress rupture property of GH4169G alloy [J]. Hot Working Technology, 2011, 40 (16): 47-49.
[13] Andrieu E, Wang N, Molins R, et al. Influence of compositional modifications on thermal stability of alloy 718 [ A]. Superalloys718, 625, 706 and Various Derivatives [C]. TMS, 1994.
[14] Andrieu E, Cozar R, Pineau A. Effect of environment and microstructure on the high temperature behavior of alloy 718 [A]. Superalloys 718-Metallurgy and Application [ C]. The Minerals, Metals & Materials Society, 1994.
[15] Xie X S, Wang G L, Dong J X, et al. Structure stability study on a newly developed nickel-base superalloy-allvac 718Plus [ A]. Sixth Internatonal Symposium on Superalloys 718, 625, 706 and Various Derivatives [C]. TMS, 2005.
[16] Wang M Q, Du J H, Deng Q, et al. Effect of the precipitation of the η-Ni3Al0. 5Nb0. 5 phase on the microstructure and mechanical properties of ATI 718Plus [J]. Journal of Alloys and Compounds, 2017, 701: 635-644.
|