网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
汽车用6061 铝型板温冲压减薄预测模型及实验验证
英文标题:Thinning predictive model and experimental verification on warm stamping of 6061 aluminum plate for car
作者:方 雅1  户燕会1 2  任 燕1  户东亮3  姜 奎4 
单位:(1. 河南工业职业技术学院 机械工程学院  2. 同济大学 中德工程学院  3. 国电投南阳热电有限责任公司  4. 南阳长弓机械科技有限公司 
关键词:6061 铝合金  温冲压  成形性能  减薄预测  减薄率 
分类号:TG156. 1
出版年,卷(期):页码:2023,48(1):79-84
摘要:

 选择Autoform 对6061 铝型板开展模拟测试, 对比不同温冲压工艺下的板材成形性能, 构建了预测型板温成形件的减薄参数模型, 并设计了验证实验方案, 零件合格率得到显著提升。研究结果表明: 板料温度提升过程中, 型板温成形件的减薄率先降低再升高。逐渐提高压边力后, 成形件形成了更大的减薄率。提高摩擦因数后, 各点的减薄率的变化均增大。板料温度、摩擦因数、压边力均会引起减薄率的明显变化, 在三元二次回归方程基础上构建减薄预测模型。预测和实测减薄率对比结果误差的最大值与最小值分别为6. 6%与1. 4%, 说明经过修正处理的模型可以实现对危险区减薄量的准确预测。该研究为优化6061 铝板料温冲压工艺提供了理论参考。

 6061 aluminum plate was simulated and tested by Autoform, and comparing the forming properties of plates under different warm stamping processes, the model that could predict the thinning parameters of warm-formed parts for plate was constructed. Then, the verification experiment scheme was designed, and the qualified rate of parts was improved significantly. The results show that in the process of the temperature increasing for sheet metal, the thinning rate of the warm-formed parts for plate decreases first and then increases. When the blank holder force is gradually increased, the formed part forms a larger thinning rate. When the friction coefficient is increased, the thinning rates of all points increases. The sheet metal temperature, the friction factor and the blank holder force can cause the significant changes of thinning rate, and a thinning prediction model is constructed on the basis of ternary quadratic regression equation. The maximum and minimum errors of the comparison results between the predicted and actual tested thinning rates are 6. 6% and 1. 4%, respectively, indicating that the modified model can accurately predict the thinning amount in the dangerous area. This study provides a theoretical reference for optimizing the warm stamping process of 6061 aluminum alloy sheet metal.

基金项目:
国家自然科学基金资助项目(51675383); 河南省科技攻关项目(182102310706); 南阳市科技攻关项目(KJGG019)
作者简介:
作者简介: 方 雅(1982-), 女, 硕士, 讲师 E-mail: fangya1104@ 163. com 通信作者: 户燕会(1982-), 女, 硕士, 讲师 E-mail: hyh850805@ 126. com
参考文献:

 [1]  凡晓波, 王旭刚, 陈险烁, 等. 铝合金管材超低温介质压力胀形行为[J]. 锻压技术, 2021, 46 (4): 1-6.


Fan X B, Wang X G, Chen Y S, et al. Pressure bulging behavior of aluminum alloy pipe in ultra-low temperature medium [ J]. Forging & Stamping Technology, 2021, 46 (4): 1-6.

[2]  Shin J, Kim T Y, Kim D E, et al. Castability and mechanical properties of new 7xxx aluminum alloys for automotive chassis/ body applications [J]. Journal of Alloys and Compounds, 2017, 698: 577-590.

[3]  蒋琳, 徐忠根. 基于单片机控制的Q890D 钢/6061 铝合金MIG焊接头组织与性能[J]. 机床与液压, 2021, 49 (4): 37-43.

Jiang L, Xu Z G. Microstructure and properties of Q890D steel/6061 aluminum alloy MIG welded joints controlled by single chip microcomputer [J]. Machine Tool & Hydraulics, 2021, 49 (4):37-43.

[4]  刘伟, 吴远志, 邓彬, 等. 时效工艺对6061 铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.

Liu W, Wu Y Z, Deng B, et al. Effect of aging process on anisotropy of mechanical properties and microstructure of 6061 aluminum alloy [J]. Materials Review, 2021, 35 (4): 4134-4138.

[5]  Deng Y L, Guo Y S, Wu P, et al. Optimal design of flax fiber reinforced polymer composite as a lightweight component for automobiles from a life cycle assessment perspective [J]. Journal of Industrial Ecology, 2019, 23 (4): 986-997.

[6]  邱宇, 孟强, 董继红, 等. 6061-T6 铝合金搅拌摩擦焊工艺及性能研究[J]. 塑性工程学报, 2021, 28 (2): 86-91.

Qiu Y, Meng Q, Dong J H, et al. Friction stir welding of aluminum alloy 6061-T6 [J]. Journal of Plasticity Engineering, 2021, 28 (2): 86-91.

[7]  于金程, 陈玉平, 许桂林, 等. 6061 铝合金环形锻件动态力学性能与失效行为[J]. 锻压技术, 2021, 46 (1): 179-185.

Yu J C, Chen Y P, Xu G L, et al. Dynamic mechanical properties and failure behavior of 6061 aluminum alloy ring forgings [ J]. Forging & Stamping Technology, 2021, 46 (1): 179-185.

[8]  Li Y B, Li Y T, Lou M, et al. Lightweight car body and its challenges to connection technology [J]. Journal of Mechanical Engineering,2012, 48 (18): 44-54.

[9]  张丽凤. 汽车用6061 铝合金热压缩变形行为研究[J]. 塑性工程学报, 2020, 27 (11): 174-181.

Zhang L F. Deformation behavior of 6061 aluminum alloy used in automobile under hot compression [J]. Journal of Plasticity Engineering,2020, 27 (11): 174-181.

[10] 刘克威, 姚明镜, 程精涛, 等. 7075 铝合金热变形抗力模型[J]. 热加工工艺, 2019, 48 (5): 161-163.

Liu K W, Yao M J, Cheng J T, et al. Hot deformation resistance model of 7075 aluminum alloy [J]. Hot Working Process, 2019,48 (5): 161-163.

[11] Li Y, Retraint D, Xue H, et al. Fatigue properties and cracking mechanisms of a 7075 aluminum alloy under axial and torsional loadings [J]. Procedia Structural Integrity, 2019, 19: 637-644.


[12] 朱永博, 杨湘杰, 桂云鹏. 热挤压与热处理对半固态方法制备7075 铝合金显微组织与拉伸性能的影响[J]. 机械工程材料, 2018, 42 (1): 39-43.

Zhu Y B, Yang X J, Gui Y P. Effect of hot extrusion and heat treatment on microstructure and tensile properties of 7075 aluminum alloy prepared by semi-solid method [J]. Mechanical Engineering Materials, 2018, 42 (1): 39-43.

[13] Milkereit B, Österreich M, Schuster P, et al. Dissolution and precipitation behavior for hot forming of 7021 and 7075 aluminum alloys [J]. Metals, 2018, 8 (7): 531-531.

[14] 李昂. 7AXX 铝合金在热压缩状态下的流变行为[J]. 原子能科学技术, 2019, 53 (3): 504-510.

Li A. Rheological behavior of 7AXX aluminum alloy under hot compression [J]. Atomic Energy Science and Technology, 2019,53 (3): 504-510.

[15] 罗仁平, 陶匡衡, 吴广新, 等. AZ31B 镁合金板材温冲压用润滑介质研究[J]. 上海金属, 2016, 38 (3): 62-67.

Luo R P, Tao K H, Wu G X, et al. Study on lubricating medium for AZ31B magnesium alloy plate for temperature stamping [J].Shanghai Metal, 2016, 38 (3): 62-67.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9