网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
自冲铆接铆钉材料流场的数值模拟研究
英文标题:Numerical simulation study on rivet material flow field in self-pierce riveting
作者:陈贵坤  曾 凯  邢保英  何晓聪  孙晓婷 
单位:昆明理工大学 
关键词:自冲铆接  铝合金  材料流动  内腔高度  铆钉高度 
分类号:TH131. 1
出版年,卷(期):页码:2023,48(1):96-102
摘要:

 以厚度为2 mm 的同种AA5052 铝合金板料为铆接对象, 利用Simufact Forming16. 0 软件建立铝合金自冲铆接的仿真模型。设定不同水平的铆钉内腔高度和铆钉高度, 分别进行模型非线性有限元计算。分析了不同铆钉工艺参数下铆钉材料流场变化以及对接头成形质量和铆接最大冲压载荷的影响。试验表明: 仿真结果与实际的接头截面成形效果相似, 接头主要变形区域内的板料流速较大; 较小内腔高度的铆钉形成的接头内锁结构更优, 残余底厚为0. 784 mm、钉脚张开度为1. 058 mm, 铆钉材料径向流速更快; 钉脚张开度、铆钉材料径向流速和铆接的最大冲压载荷均随着铆钉高度的增加而增大, 残余底厚随着铆钉高度的增加而减小。

 For riveting of the same AA5052 aluminum alloy sheet with thickness of 2 mm, the simulation model of aluminum alloy selfpierce riveting (SPR) was established by finite element software Simufact Forming 16. 0. Then, the rivet cavity height and rivet height at different levels were set, and the model nonlinear finite element calculations were conducted respectively. Furthermore, the change of rivet material flow field under different rivet process parameters and its influences on the joint forming quality and the maximum stamping load of riveting were analyzed. The tests show that the forming effects of simulation and actual joint sections are similar, and the flow velocity of sheet metal in the main deformation area of joint is relatively high. The smaller cavity height of rivet creates a better internal locking structure in the joint with a remaining bottom thickness of 0. 784 mm and a rivet spread of 1. 058 mm, as well as a faster radial flow velocity of rivet material. The rivet spread, the radial flow velocity of rivet materials and the maximum stamping load of riveting all increase with the increasing of the rivet height, and the remaining bottom thickness decreases with the increasing of the rivet height.

基金项目:
国家自然科学基金资助项目(51565022, 51565023)
作者简介:
作者简介: 陈贵坤(1995-), 男, 硕士 E-mail: chengk_kust@ 163. com 通信作者: 曾 凯(1976-), 男, 博士, 副教授 E-mail: kmzk201109@ 163. com
参考文献:

 [1]  He X, Pearson I, Young K. Self-pierce riveting for sheet materials:State of the art [J]. Journal of Materials Processing Technology,2008, 199 (1-3): 27-36.


[2]  Zhang X, He X, Gu F, et al. Self-piercing riveting of aluminiumlithium alloy sheet materials [J]. Journal of Materials Processing Technology, 2019, 268: 192-200.

[3]  Alshmri F. Lightweight material: Aluminium high silicon alloys in the automotive industry [ J ]. Advanced Materials Research, 2013, 774-776: 1271-1276.

[4]  刘洋, 庄蔚敏, 施宏达. 自冲铆接头疲劳性能影响因素研究进展[J]. 材料导报, 2019, 33 (11): 1825-1830.

Liu Y, Zhuang W M, Shi H D. Influencing factors on fatigue performance of self-piercing riveted joints: A review [J]. Materials Reports, 2019, 33 (11): 1825-1830.

[5]  魏文杰, 何晓聪, 张先炼, 等. DP780/ AA6061 薄板自冲铆接头微动损伤特性[J]. 机械工程学报, 2020, 56 (6): 169-175.

Wei W J, He X C, Zhang X L, et al. Characteristics of fretting damage in hybrid DP780/ AA6061 self-piercing riveted joints [J]. Journal of Mechanical Engineering, 2020, 56 (6): 169-175.

[6]  孙晓婷, 曾凯, 何晓聪, 等. 基于响应面法的铝合金自冲铆接头强度预测模型[J]. 塑性工程学报, 2020, 27 (8):199-204.

Sun X T, Zeng K, He X C, et al. Strength prediction model of self-piercing riveted joints of aluminum alloy based on response surface method [ J]. Journal of Plasticity Engineering, 2020, 27(8): 199-204.

[7]  万淑敏, Hu S Jack, 李双义, 等. 半空心铆钉自冲铆接的工艺参数及铆接质量的判定[J]. 天津大学学报, 2007, 40(4): 494-498.

Wan S M, Hu S Jack, Li S Y, et al. Process parameters and joint evaluation of self-piercing riveting with half-hollow rivets [ J]. Journal of Tianjin University, 2007, 40 (4): 494-498.

[8]  曾凯, 何晓聪, 邢保英. 钉脚张开度对自冲铆构件机械内锁刚度的影响[J]. 焊接学报, 2019, 40 (6): 143-147, 167.

Zeng K, He X C, Xing B Y. Effect of the degree of rivet opening on the rigidity of the interlock in self-piercing riveting joints [J]. Trabsactions of the China Welding Institution, 2019, 40 (6):

143-147, 167.

[9]  张永强, 伊日贵, 付参, 等. 钢铝自冲铆接工艺过程仿真与实验研究[J]. 电焊机, 2018, 48 (10): 26-29.

Zhang Y Q, Yi R G, Fu C, et al. Simulation and experiments on self piercing riveting process of steel and aluminum [J]. Electric Welding Machine, 2018, 48 (10): 26-29.

[10] 周琦. 基于数值模拟的铝合金板料自冲铆接成形[J]. 锻压技术, 2019, 44 (7): 47-51.

Zhou Q. Self-piercing riveting of aluminum alloy sheet based on numerical simulation [ J ]. Forging & Stamping Technology, 2019, 44 (7): 47-51.

[11] 杜爱民, 易纪伟, 陈垚伊, 等. 基于Simufact 的自冲铆接试验与仿真平台设计[J]. 新技术新工艺, 2021, (6): 32-38.

Du A M, Yi J W, Chen Y Y, et al. Design of self-piercing riveting test and simulation platform based on simufact method [J].New Technology & New Process, 2021, (6): 32-38.

[12] Welf-Guntram Drossel, Reinhard Mauermann, Raik Grützner, et al. Numerical and experimental analysis of self piercing riveting process with carbon fiber-reinforced plastic and aluminium sheets[J]. Key Engineering Materials, 2013, 2443: 1045-1054.

[13] GB/ T 228. 1—2021, 金属材料 拉伸试验 第1 部分: 室温试验方法[S].

GB/ T 228. 1—2021, Metallic materials—Tensile testing Part 1:Method of test at room temperature [S].

[14] 许竞楠, 何晓聪, 曾凯, 等. 自冲铆接头组织及性能分析[J]. 焊接学报, 2014, 35 (7): 91-95, 118.

Xu J N, He X C, Zeng K, et al. Effect of the technology characteristics of self-piercing riveting [ J]. Trabsactions of the China Welding Institution, 2014, 35 (7): 91-95, 118.

 

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9