网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
等通道转角挤压对Mg-4Zn-1Mn-0. 2Ca 合金显微 组织与腐蚀性能的影响
英文标题:Effect of equal channel angular pressing on microstructure and corrosion property of Mg-4Zn-1Mn-0. 2Ca alloy
作者:虞佳雯  曹晓卿  王利飞  王永祥  李永峭 
单位:太原理工大学 
关键词:Mg-4Zn-1Mn-0. 2Ca 合金  等通道转角挤压  组织均匀化  显微组织  耐蚀性 
分类号:TG379
出版年,卷(期):页码:2023,48(1):103-107
摘要:

 探讨了等通道转角挤压对生物医用合金材料Mg-4Zn-1Mn-0. 2Ca 合金显微组织和腐蚀性能的影响。通过对挤压态Mg-4Zn-1Mn-0. 2Ca 合金进行共8 道次的等通道转角挤压变形, 获得了不同状态的合金, 并对3 种不同状态的试样进行了显微组织观察。8 道次变形后合金的晶粒尺寸最小为10. 52 μm, 且组织更均匀。采用浸泡实验测得了合金在模拟体液中的腐蚀速率,其中8 道次变形的合金的腐蚀速率最低, 为1. 897 mm·y-1, 并通过电化学实验进一步分析了等通道扭转挤压变形后合金腐蚀行为的变化。结果表明: 等通道转角挤压变形后挤压态Mg-4Zn-1Mn-0. 2Ca 镁合金的晶粒逐渐细化且组织更加均匀, 随着挤压道次的增加, 合金在模拟体液中的局部阻抗逐渐提高, 耐蚀性得到了改善。

 The influences of equal channel angular pressing (ECAP) on the microstructure and corrosion property of biomedical Mg-4Zn-1Mn-0. 2Ca alloy were investigated. Then, Mg-4Zn-1Mn-0. 2Ca alloy was subjected to eight passes of equal channel angular pressing deformation to obtain the alloys in different states, and the microstructures of the samples in three states were observed. Furthermore, the minimum grain size of the alloy after eight-pass deformation was 10. 52 μm, and the microstructure was more uniform. The corrosion rate of the alloy in the simulated body fluid (SBF) was measured by immersion experiment, and the corrosion rate of the alloy by eight-pass deformation was the lowest at 1. 897 mm·y-1. Moreover, the change of the corrosion behavior for the alloy after the ECAP deformation was analyzed by electrochemical experiment. The results show that after ECAP deformation, the grains of extruded Mg-4Zn-1Mn-0. 2Ca magnesium alloy are gradually refined and the microstructure is more uniform. With the increasing of extrusion pass, the local impedance of the alloy in SBF is gradually increased, and the corrosion resistance is improved.

基金项目:
山西省自然科学基金资助项目(201901D111104);山西省国际合作项目(201903D421076)
作者简介:
作者简介: 虞佳雯(1996-), 女, 硕士 E-mail: 752442518@ qq. com 通信作者: 曹晓卿(1966-), 女, 博士, 教授 E-mail: caoxiaoqing@ tyut. edu. cn
参考文献:

 [1]  张润芳, 刘德宝, 李华, 等. 等通道转角挤压对生物Mg-Zn-Ca 合金显微组织与腐蚀行为的影响[J]. 稀有金属材料与工程, 2018, 47 (9): 2833-2839.


Zhang R F, Liu D B, Li H, et al. Effect of ECAP deformation on microstructure and corrosion behavior of biomedical Mg-Zn-Ca alloy [J]. Rare Metal Material Engineer, 2018, 47 ( 9): 2833 -2839.

[2]  Hara N, Kobayashi Y, Kagaya D, et al. Formation and breakdown of surface films on magnesium and its alloys in aqueous solutions [J]. Corros. Sci. , 2007, 49: 166-175.

[3]  郑玉峰, 顾雪楠, 李楠, 等. 生物可降解镁合金的发展现状与展望[J]. 中国材料进展, 2011, 30: 30-43.

Zheng Y F, Gu X N, Li N, et al. Development status and prospect of biodegradable magnesium alloys [J]. Materials China, 2011,30: 30-43.

[4]  Ali Y, Qiu D, Jiang B, et al. Current research progress in grain refinement of cast magnesium alloys: A review article [J]. J. Alloys Compd. , 2015, 619: 639-651.

[5]  Arab S M, Akbarzadeh A. The effect of equal channel angular pressing process on the microstructure of AZ31 Mg alloy strip shaped specimens [J]. J. Magnes. Alloy, 2013, 1: 145-149.

[6]  Atrens A, Winzer N. Stress corrosion cracking and hydrogen diffusion in magnesium [J]. Adv. Eng. Mater. , 2006, 8: 749-751.

[7]  高植, 孟模, 张治民, 等. 固溶参数对Mg-13Gd-4Y-2Zn-0. 6Zr合金组织及性能的影响[ J]. 稀有金属, 2021, 45 (6):657-663.

Gao Z, Meng M, Zhang Z M, et al. Microstructure and properties of Mg-13Gd-4Y-2Zn-0. 6Zr alloy with different solid solution parameters[J]. Chinese Journal of Rare Metals, 2021, 45 (6):

657-663.

[8]  Dziuba D, Meyer-Lindenberg A. Long-term in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant [J], Acta Biomater, 2013,9: 8548-8560.

[9]  Göken J, Letzig D, Kainer K U, et al. Measurement of crack induced damping of cast magnesium alloy AZ91 [ J]. J. Alloys Compd. , 2004, 378: 220-225.

[10] Bakhsheshi-Rad H R, Abdul-Kadir M R. Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg-0. 5Ca-xZn alloys [J]. Corros. Sci. , 2012, 64: 184-197.

[11] Deng H, Yang Y. Effect of Mn content on the microstructure and mechanical properties of Mg-6Li-4Zn-xMn alloys [J]. Prog. Nat. Sci. Mater. Int. , 2021, 31: 583-590.

[12] 裴娟, 王建力, 杨忠, 等. ECAP 变形对Mg-4. 5Zn-1Ca 合金 显微组织及腐蚀行为的影响[J]. 热加工工艺, 2019, 48(15): 51-55.

Pei J, Wang J L, Yang Z, et al. Effect of ECAP deformation on microstructure and corrosion behavior of Mg-4. 5Zn-1Ca alloys [J]. Hot Working Technology, 2019, 48 (15): 51-55.

[13] 邓彬, 李庆芬, 吴远志, 等. 高应变速率多向锻造AZ31 镁合金组织及耐蚀性能的影响[J]. 锻压技术, 2021, 48 (8):7-11.

Deng B, Li Q F, Wu Y Z, et al. Effect of high strain rate multidirectional forging on microstructure and corrosion resistance of AZ31 magnesium alloy [J]. Forging & Stamping Technology, 2021, 48(8): 7-11.

[14] Lin J, Tong X, Shi Z, et al. A biodegradable Zn-1Cu-0. 1Ti Alloy with antibacterial properties for orthopedic applications [J]. Acta Biomater, 2020, 106: 410-427.

 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9