网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
6005A 铝合金薄壁型材压弯成形有限元分析及试验
英文标题:Finite element analysis and experiment on press bending for 6005A aluminium alloy thin-walled profile
作者:廖 斌1  张流锟2  吴晓东3  卢有庆1  胡 武1 
单位:1. 南南铝业股份有限公司 2. 中国航发贵州黎阳航空动力有限公司 3. 重庆大学 
关键词:压弯  薄壁型材  截面畸变率  型材结构  填充材料  填充方式 
分类号:TG146. 2
出版年,卷(期):页码:2023,48(1):128-135
摘要:

 针对薄壁型材在压弯过程中易产生的截面畸变缺陷, 借助于Deform-3D 有限元模拟软件及压弯设备, 重点探讨了6005A 铝合金薄壁型材(厚度为2.5 mm) 的型材结构、填充材料及填充方式对压弯后型材结构畸变的影响。结果表明: 除PU 外, PA6、PP 及PVC 均具有较高的屈服强度(≥21 MPa), 在压弯过程中可有效支撑薄壁型材以降低型材结构的畸变率。由于型材上、下表面在弯曲过程中受力不一致, 造成上、下模接触面的截面畸变规律有所区别。不同型材结构(未填充) 压弯后, 上、下模接触面的截面畸变率与填充压弯时截面畸变率的变化规律基本一致, 这说明更改型材结构可略微降低截面畸变率, 但改善效果并不明显。采用方案9 (型材结构2、PP-填充方式2) 压弯后的截面畸变情况明显改善且优于方案8 (型材结构1、PP-填充方式1), 并对方案9 进行试验验证, 发现压弯后型材结构的截面畸变率较方案5 (原始结构-未填充) 改善明显且满足设计需求。

 For the problem that the thin-walled profiles were easy to occur the section distortion defects in the press bending process, the influences of 6005A aluminium alloy thin-walled (the thickness of 2. 5 mm) profile structure, filling material and filling method on the structural distortion of profile after press bending were explored by finite element simulation software Deform-3D and press bending equipment. The results show that except for PU, the filling material of PA6, PP and PVC all have high yield strength (≥21 MPa) and can effectively support thin-walled profiles during the press bending process to reduce the section distortion rate. Due to the inconsistent of the force on the upper and lower surfaces of profile during the press bending process, the section distortion law for the contact surface of the upper and lower dies is different. The variation law of section distortion rate at the contact surface of the upper and lower dies after press bending with different profile structures (without filling) is basically the same as that during the filled press bending, which shows that changing the profile structure can slightly reduce the section distortion rate, but the improvement is not obvious. The section distortion condition in scheme 9 (profile structure 2, PP-filling method 2) after press bending is significantly better than that in scheme 8 (profile structure 1, PP-filling method 1), and through the verification test of scheme 9, the section distortion rate after press bending is significantly better than that in scheme 5 (original structure-without filling) and meets the design requirements.

 

基金项目:
南宁市科学研究与技术开发计划项目(20221028)
作者简介:
作者简介: 廖 斌(1992-), 男, 博士, 副高级工程师 E-mail: bin. liao@ foxmail. com 通信作者: 吴晓东(1974-), 男, 博士, 副研究员 E-mail: xiaodongwu@ cqu. edu. cn
参考文献:

 [1]  潘德聪, 刘竝, 于庆斌, 等. 微量Sc 对6005A 合金微观组织与拉伸性能的影响[J]. 中国有色金属学报, 2021, 32 (7):1855-1862.


Pan D C, Liu B, Yu Q B, et al. Effect of trace Sc on the microstructure and tensile properties of 6005A alloy [J]. The Chinese Journal of Nonferrous Metals, 2021, 32 (7): 1855-1862.

[2]  Yao R, Ji H C, Jin J F, et al. High temperature constitutive model of 6005A aluminum alloy [J]. Metallurgy, 2021, 60 (3-4): 265-268.

[3]  王宇, 石娇, 刘欢, 等. 6005A 地铁铝型材皮质层对组织及性能的影响[J]. 铝加工, 2020, (5): 20-23.

Wang Y, Shi J, Liu H, et al. The influence of the cortical layer on the microstructure and performance of 6005A subway aluminum profiles [J]. Aluminium Fabrication, 2020, (5): 20-23.

[4]  王宇, 韩世涛, 王周冰, 等. 轨道车体6005A 铝合金大截面复杂制品性能分析[J]. 热处理技术与装备, 2018, 39 (3):44-48.

Wang Y, Han S T, Wang Z B, et al. Analysis on properties of 6005A aluminum alloy complex product of rail car body with large cross section [ J]. Heat Treatment Technology and Equipment, 2018, 39 (3): 44-48.

[5]  沈智, 石一磬, 周英丽, 等. 6014 铝合金热冲压流变行为的本构模型修正[J]. 锻压技术, 2021, 46 (12): 67-73.

Shen Z, Shi Y Q, Zhou Y L, et al. Modification on constitutive model for rheological behaviour of 6104 aluminium alloy in hot stamping [J]. Forging & Stamping Technology, 2021, 46 (12): 67-73.

[6]  曹东升, 姜珊, 何金, 等. 6005A 合金挤压型材压溃性能研究[J]. 铝加工, 2020, (3): 25-27.

Cao D S, Jiang S, He J, et al. Study on crushing property of 6005A alloy extrusion profile [J]. Aluminium Fabrication, 2020, (3): 25-27.

[7]  朱涵超. 简析铝合金汽车防撞梁设计[J]. 科技风, 2014,(2): 35-37.

Zhu H C. Brief analysis of aluminium alloy automotive beam design [J]. Ke Ji Feng, 2014, (2): 35-37.

[8]  卢寿超. 浅谈铝合金汽车后保险杆连接板加工工艺[J]. 福建冶金, 2019, 48 (1): 26-28.

Lu S T. Brief discussion on connecting plate process analysis of vehicle rear bumpers [J]. Fujian Metallurgy, 2019, 48 (1): 26-28.

[9]  黄传演, 李承波, 周旺, 等. 铝合金型材在汽车上的应用[A]. 中国铝加工产业年度大会 [C]. 中国有色金属加工工业协会: 佛山, 2018.

Huang C Y, Li C B, Zhou W, et al. Application of aluminum alloy profile in automobile [A]. Annual Conference of China Aluminum Processing Industry [C]. China Non-Ferrous Metals Fabrication Industry Association: Foshan, 2018.

[10] 李光俊, 孙红, 曾元松, 等. 铝合金小弯曲半径薄壁管数控绕弯模具设计[J]. 锻压技术, 2021, 46 (4): 150-155.

Li G J, Sun H, Zeng Y S, et al. Research on CNC draw-bending die design for aluminum alloy thin-walled tube with small bending radius [J]. Forging & Stamping Technology, 2021, 46 (4):

150-155.

[11] 谷诤巍, 吕萌萌, 卢睿, 等. 铝型材弯曲成形截面畸变缺陷控制方法研究[J]. 汽车工艺与材料, 2012, (6): 72-74.

Gu Z W, Lyu M M, Lu R, et al. Study on control method of section distortion defect in bending forming of aluminum profile [J]. Automobile Technology & Materials, 2012, (6): 72-74.

[12] 许亮, 徐从昌, 李落星. 成形温度对铝合金型材挤压-弯曲一体化成形回弹及截面畸变的影响[J]. 锻压技术, 2021, 46(9): 154-162.

Xu L, Xu C C, Li L X. Influence of forming temperature on springback and cross-section distortion for aluminum alloy profile during extrusion-bending integration forming [J]. Forging & Stamping Technology, 2021, 46 (9): 154-162.

[13] 白梅杉, 陆彬, 崔振山. 矩形截面铝型材弯曲成形特性分析[J]. 塑性工程学报, 2013, 20 (3): 55-59.

Bai M S, Lu B, Cui Z S. Analysis for bending forming behaviour of rectangular aluminium section-beam [J]. Journal of Plasticty Engineering, 2013, 20 (3): 55-59.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9