[1] Mordike B L, Ebert T. Magnesium: Properties-applications-potential [ J]. Materials Science and Engineering: A, 2001, 302(1): 37-45.
[2] 李庆芬, 邓彬, 吴远志, 等. 轧制应变量对AZ31 镁合金组织与腐蚀性能的影响[J]. 锻压技术, 2022, 47 (8): 152-157.
Li Q F, Deng B, Wu Y Z, et al. Influence of rolling strain on microstructure and corrosion properties of AZ31 magnesium alloy [J]. Forging & Stamping Technology, 2022, 47 (8) : 152-
157.
[3] 张玉, 黄晓锋, 郭峰, 等. 热处理工艺对Mg-6Zn-3Al 镁合金显微组织和力学性能的影响[J]. 中国有色金属学报, 2018,28 (6): 1092-1100.
Zhang Y, Huang X F, Guo F, et al. Effects of heat treatment technology on microstructure and mechanical properties of Mg-6Zn-3Al magnesium alloy [J]. The Chinese Journal of Nonferrous Metals,2018, 28 (6): 1092-1100.
[4] 邓彬, 李庆芬, 吴远志, 等. 高应变速率多向锻造对AZ31 镁合金组织及耐腐蚀性能的影响[J]. 锻压技术, 2021, 46(8): 7-11, 25.
Deng B, Li Q F, Wu Y Z, et al. Influence of high strain rate multi-directional forging on microstructure and corrosion resistance property for AZ31 magnesium alloy [ J]. Forging & Stamping
Technology, 2021, 46 (8): 7-11, 25.
[5] 宋波, 辛仁龙, 郭宁, 等. 变形镁合金室温应变硬化行为的研究进展[J]. 中国有色金属学报, 2014, 24 (11): 2699 -2710.
Song B, Xin R L, Guo N, et al. Research progress of strain hardening behavior at room temperature in wrought magnesium alloys [J]. The Chinese Journal of Nonferrous Metals, 2014, 24
(11): 2699-2710.
[6] 吴远志, 严红革, 朱素琴, 等. Mg-Zn-Zr 合金高应变速率多向锻造组织演变及力学性能[J]. 材料研究学报, 2014, 28(2): 144-152.
Wu Z Y, Yan H G, Zhu S Q, et al. Microstruture evolution and mechanical properties of Mg-Zn-Zr alloy during highstrain rate triaxial-forging [J]. Chinese Journal of Materias Research, 2014,28 (2): 144-152.
[7] 李庆芬, 吴远志, 邓彬, 等. 单道次大应变轧制对AZ31 镁合金组织与耐腐蚀性能的影响[J]. 矿冶工程, 2019, 39 (2):125-127.
Li Q F, Wu Y Z, Deng B, et al. Effect of single-pass large strain rolling on microstructure and corrosion resistance of AZ31 magnesium alloy [J]. Mining and Metallurgical Engineering, 2019, 39(2): 125-127.
[8] 卢立伟, 赵俊, 刘龙飞, 等. 镁合金大塑性变形的研究进展[J]. 材料热处理学报, 2014, 35 (S1): 5-11.
Lu L W, Zhao J, Liu L F, et al. Research achievements of severe plastic deformation on magnesium alloys [J]. Transactions of Materials and Heat Treatment, 2014, 35 (S1): 5-11.
[9] 吴远志, 严红革, 陈吉华, 等. AZ31 镁合金高应变速率多向锻造组织演变及力学性能[J]. 中国有色金属学报, 2012, 22(11): 3000-3005.
Wu Y Z, Yan H G, Chen J H, et al. Microstructure evolution and mechanical properties of AZ31 magnesium alloy fabricated by high strain rate triaxial-forging [J]. The Chinese Journal of Nonferrous Metals, 2012, 22 (11): 3000-3005.
[10] 吴远志, 严红革, 朱素琴, 等. 多向锻造ZK60 镁合金组织和性能均匀性研究[J]. 中国有色金属学报, 2014, 24 (2):310-316.
Wu Y Z, Yan H G, Zhu S Q, et al. Homogeneity of microstructure and mechanical properties of ZK60 magnesium alloys fabricated by high strain rate triaxial-forging [J]. The Chinese Journal of Nonferrous Metals, 2014, 24 (2): 310-316.
[11] 朱素琴. 中高应变速率轧制制备超细晶镁合金板材原理探索及相关基础研究[D]. 长沙: 湖南大学, 2012.
Zhu S Q. An Exploratory Study on the Principle of the Fabrication of Ultrafine Grained Magnesium Sheets Using Medium-high Strain Rate Rolling Technique and the Related Fundamental Research [D]. Changsha: Hunan University, 2012.
[12] Zhu S Q, Yan H G, Chen J H, et al. Effect of twinning and dynamic recrystallization on the high strain rate rolling process [J]. Scripta Materialia, 2010, 63 (10): 985-988.
[13] Zhu S Q, Yan H G, Liao X Z, et al. Mechanism for enhanced plasticity in magnesium alloy [J]. Acta Materialia, 2015, 82:344-355.
[14] Zhu S Q, Yan H G, Chen J H, et al. Fabrication of Mg-Al-Zn-Mn alloy sheets with homogeneous fine-grained structures using high strain-rate rolling in a wide temperature range [J]. Materials Science and Engineering: A, 2013, 559: 765-772.
|