网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
P20 汽车模具钢表面激光淬火对其组织与性能的影响
英文标题:Influence of surface laser quenching on its microstructure and properties for P20 automobile die steel
作者:王建军1  舒凤远2  王建伟3  高 英4  苗莉莉1  张 新5 
单位:1. 忻州职业技术学院 2. 中山大学 3. 中国消防救援学院 4. 忻州涌盈环境建设有限公司 5. 国家电投集团中央研究院 
关键词:TG156. 34 
分类号:TG156. 34
出版年,卷(期):页码:2023,48(1):222-228
摘要:

 采用激光淬火技术对P20 模具钢进行表面热处理, 对淬火层的微观组织和摩擦磨损性能进行了研究, 并就激光淬火技术对模具钢的强化机理做出阐释。结果表明: 基体为已经分解的珠光体组织, P20 模具钢淬火区域的组织为针状马氏体和板条状马氏体, 并且随着激光功率的增大, 马氏体组织出现粗化现象; 淬火后主要形成了(Cr, Fe)、(Mn, Fe) 固溶体, 产生了固溶强化; 经过激光淬火后的P20 模具钢的硬度得到很大提升, 最大硬度值为520 HV, 测得淬硬层的深度约为0. 93 mm; 激光功率为1800 W 时, 淬火层的磨损率仅为0. 36%, 摩擦因数为0. 2013。P20 模具钢激光淬火的摩擦磨损机理为磨粒磨损+氧化磨损, 同时伴随少量的剥落现象。

 The surface heat treatment of P20 die steel was carried out by laser quenching technology. Then, the microstructure and friction and wear properties of quenched layer were studied, and the strengthening mechanism of the die steel by laser quenching technology was explained. The results show that the matrix is the decomposed pearlite, and the organization in quenched area for P20 die steel is acicular martensite and lath martensite, and with the increasing of laser power, the martensite structure coarsens. The solid solutions of (Cr, Fe) and (Mn, Fe) are mainly formed after quenching, and the solid solution strengthening is produced. The hardness of P20 die steel after laser quenching is greatly improved, the maximum hardness value is 520 HV, and the measured depth of the hardening layer is about 0. 93 mm. When the laser power is 1800 W, the wear rate of the quenched layer is only 0. 36%, and the friction coefficient is 0. 2013. The friction and wear mechanism of laser quenching for P20 die steel is abrasive wear and oxidation wear, accompanied by a small amount of spalling phenomenon.

基金项目:
国家自然科学基金青年基金资助项目(51905126);国家重点研发计划项目(2019YFC1511400)
作者简介:
作者简介: 王建军(1980-), 男, 学士, 高级技师 E-mail: 475988826@ qq. com 通信作者: 张 新(1980-), 男, 博士, 研究员 E-mail: kmzx201@ 163. com
参考文献:

 [1]  Li H X, Qi H L, Song C H, et al. Selective laser melting of P20 mould steel: Investigation on the resultant microstructure, hightemperature hardness and corrosion resistance [J]. Powder Metallurgy,2018, 61 (1): 21-27.


[2]  Park C, Sim A, Ahn S, et al. Influence of laser surface engineering of AISI P20-improved mold steel on wear and corrosion behaviors [J]. Surface and Coatings Technology, 2019, 377: 124852.

[3]  Yan G, Lu S, Zhang M, et al. Wear and corrosion behavior of P20 steel surface modified by gas nitriding with laser surface engineering[J]. Applied Surface Science, 2020, 530: 147306.

[4]  Zhang Z, Yu T, Kovacevic R. Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC [ J].Applied Surface Science, 2017, 410: 225-240.

[5]  Telasang G, Dutta Majumdar J, Wasekar N, et al. Microstructure and mechanical properties of laser clad and post-cladding tempered AISI H13 tool steel [J]. Metallurgical and Materials Transactions A, 2015, 46 (5): 2309-2321.

[6]  Wang B, Zhao X, Li W, et al. Effect of nitrided-layer microstructure control on wear behavior of AISI H13 hot work die steel [J]. Applied Surface Science, 2018, 431: 39-43.

[7]  Peng T, Dai M, Cai W, et al. The enhancement effect of salt bath preoxidation on salt bath nitriding for AISI 1045 steel [J]. Applied Surface Science, 2019, 484: 610-615.

[8]  Hoppius J S, Kukreja L M, Knyazeva M, et al. On femtosecond laser shock peening of stainless steel AISI 316 [J]. Applied Surface Science, 2018, 435: 1120-1124.

[9]  Salimianrizi A, Foroozmehr E, Badrossamay M, et al. Effect of laser shock peening on surface properties and residual stress of Al6061-T6 [J]. Optics and Lasers in Engineering, 2016, 77:112-117.

[10] Lee K H, Choi S W, Yoon T J, et al. Microstructure and hardness of surface melting hardened zone of mold steel, SM45C using Yb: YAG disk laser [J]. Journal of Welding and Joining, 2016, 34(1): 75-81.

[11] Trdan U, Skarba M, Porro J A, et al. Application of massive laser shock processing for improvement of mechanical and tribological properties [J]. Surface and Coatings Technology, 2018, 342: 1-11.

[12] Abeens M, Muruganandhan R, Thirumavalavan K, et al. Surface modification of AA7075 T651 by laser shock peening to improve the wear characteristics [J]. Materials Research Express, 2019, 6 (6): 066519.

[13] Chen Z, Zhu Q, Wang J, et al. Behaviors of 40Cr steel treated by laser quenching on impact abrasive wear [ J]. Optics & Laser Technology, 2018, 103: 118-125.

[14] Lesyk D, Martinez S, Dzhemelinskyy V, et al. Surface microrelief and hardness of laser hardened and ultrasonically peened AISI D2 tool steel [ J]. Surface and Coatings Technology, 2015, 278:108-120.

[15] Li H, Chen G, Zhang G, et al. Characteristics of the interface of a laser-quenched steel substrate and chromium electroplate [ J].Surface and Coatings Technology, 2006, 201 (3-4): 902-907.

[16] Rana J, Goswami G, Jha S, et al. Experimental studies on the microstructure and hardness of laser-treated steel specimens [ J]. Optics & Laser Technology, 2007, 39 (2): 385-393.

[17] 张茂, 张嘉城, 谈发堂, 等. 模具清洁热处理过程的形性精 确控制[J]. 锻压技术, 2021, 46 (9): 34-42.

Zhang M, Zhang J C, Tan F T, et al. Precise control on shape and performance during clean heat treatment process for die [J]. Forging & Stamping Technology, 2021, 46 (9): 34-42.

[18] GB/ T 18683—2002, 钢铁件激光表面淬火[S].

GB/ T 18683—2002, Laser surface quenching of iron and steel parts [S].

[19] 王新淑. 金属材料磨损失效及防护的探讨[J]. 中国高新区,2017, (12): 127.

Wang X S. Discussion on wear failure and protection of metal materials[J]. Science & Technology Industry Parks, 2017, (12): 127.

[20] 黄文, 薛召露, 刘侠, 等. 等离子喷涂CoCrAlTaY-Al2O3 涂层的制备及高温摩擦磨损性能研究[J]. 稀有金属, 2021, 45(7): 836-847.

Huang W, Xue Z L, Liu X, et al. Preparation and friction-wear property of plasma-sprayed CoCrAlTaY-Al2O3 coating [J]. Chinese Journal of Rare Metals, 2021, 45 (7): 836-847.

 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9