[1] Li H X, Qi H L, Song C H, et al. Selective laser melting of P20 mould steel: Investigation on the resultant microstructure, hightemperature hardness and corrosion resistance [J]. Powder Metallurgy,2018, 61 (1): 21-27.
[2] Park C, Sim A, Ahn S, et al. Influence of laser surface engineering of AISI P20-improved mold steel on wear and corrosion behaviors [J]. Surface and Coatings Technology, 2019, 377: 124852.
[3] Yan G, Lu S, Zhang M, et al. Wear and corrosion behavior of P20 steel surface modified by gas nitriding with laser surface engineering[J]. Applied Surface Science, 2020, 530: 147306.
[4] Zhang Z, Yu T, Kovacevic R. Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC [ J].Applied Surface Science, 2017, 410: 225-240.
[5] Telasang G, Dutta Majumdar J, Wasekar N, et al. Microstructure and mechanical properties of laser clad and post-cladding tempered AISI H13 tool steel [J]. Metallurgical and Materials Transactions A, 2015, 46 (5): 2309-2321.
[6] Wang B, Zhao X, Li W, et al. Effect of nitrided-layer microstructure control on wear behavior of AISI H13 hot work die steel [J]. Applied Surface Science, 2018, 431: 39-43.
[7] Peng T, Dai M, Cai W, et al. The enhancement effect of salt bath preoxidation on salt bath nitriding for AISI 1045 steel [J]. Applied Surface Science, 2019, 484: 610-615.
[8] Hoppius J S, Kukreja L M, Knyazeva M, et al. On femtosecond laser shock peening of stainless steel AISI 316 [J]. Applied Surface Science, 2018, 435: 1120-1124.
[9] Salimianrizi A, Foroozmehr E, Badrossamay M, et al. Effect of laser shock peening on surface properties and residual stress of Al6061-T6 [J]. Optics and Lasers in Engineering, 2016, 77:112-117.
[10] Lee K H, Choi S W, Yoon T J, et al. Microstructure and hardness of surface melting hardened zone of mold steel, SM45C using Yb: YAG disk laser [J]. Journal of Welding and Joining, 2016, 34(1): 75-81.
[11] Trdan U, Skarba M, Porro J A, et al. Application of massive laser shock processing for improvement of mechanical and tribological properties [J]. Surface and Coatings Technology, 2018, 342: 1-11.
[12] Abeens M, Muruganandhan R, Thirumavalavan K, et al. Surface modification of AA7075 T651 by laser shock peening to improve the wear characteristics [J]. Materials Research Express, 2019, 6 (6): 066519.
[13] Chen Z, Zhu Q, Wang J, et al. Behaviors of 40Cr steel treated by laser quenching on impact abrasive wear [ J]. Optics & Laser Technology, 2018, 103: 118-125.
[14] Lesyk D, Martinez S, Dzhemelinskyy V, et al. Surface microrelief and hardness of laser hardened and ultrasonically peened AISI D2 tool steel [ J]. Surface and Coatings Technology, 2015, 278:108-120.
[15] Li H, Chen G, Zhang G, et al. Characteristics of the interface of a laser-quenched steel substrate and chromium electroplate [ J].Surface and Coatings Technology, 2006, 201 (3-4): 902-907.
[16] Rana J, Goswami G, Jha S, et al. Experimental studies on the microstructure and hardness of laser-treated steel specimens [ J]. Optics & Laser Technology, 2007, 39 (2): 385-393.
[17] 张茂, 张嘉城, 谈发堂, 等. 模具清洁热处理过程的形性精 确控制[J]. 锻压技术, 2021, 46 (9): 34-42.
Zhang M, Zhang J C, Tan F T, et al. Precise control on shape and performance during clean heat treatment process for die [J]. Forging & Stamping Technology, 2021, 46 (9): 34-42.
[18] GB/ T 18683—2002, 钢铁件激光表面淬火[S].
GB/ T 18683—2002, Laser surface quenching of iron and steel parts [S].
[19] 王新淑. 金属材料磨损失效及防护的探讨[J]. 中国高新区,2017, (12): 127.
Wang X S. Discussion on wear failure and protection of metal materials[J]. Science & Technology Industry Parks, 2017, (12): 127.
[20] 黄文, 薛召露, 刘侠, 等. 等离子喷涂CoCrAlTaY-Al2O3 涂层的制备及高温摩擦磨损性能研究[J]. 稀有金属, 2021, 45(7): 836-847.
Huang W, Xue Z L, Liu X, et al. Preparation and friction-wear property of plasma-sprayed CoCrAlTaY-Al2O3 coating [J]. Chinese Journal of Rare Metals, 2021, 45 (7): 836-847.
|