网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
7022 铝合金的高温力学性能和材料本构方程研究
英文标题:Study on high temperature mechanical properties and material constitutive equation for 7022 aluminum alloy
作者:殷 剑1  黎 诚2  金 康1 2  沈 智3  董 奇4  张 波2 
单位:1. 中国机械总院集团北京机电研究所有限公司2. 中机精密成形产业技术研究院(安徽) 股份有限公司 3. 南昌工程学院 4. 合肥学院 
关键词:7022 铝合金  热变形  高温力学性能  本构方程  流变应力 
分类号:TG146. 2
出版年,卷(期):页码:2023,48(1):237-244
摘要:

 塑性成形过程中, 金属在模具型腔中处于三向应力状态且其变形温度随着流变应变处于动态变化中, 因此, 合金的流变应力受变形温度、变形量等多因素的综合作用。利用高温压缩模拟试验和有限元分析软件, 研究了7022 铝合金在变形温度为350、400 和450 ℃, 应变速率为0. 01、0. 1、1 和10 s-1, 总变形量为50%时的流变应力、变形温度与应变速率之间的关系; 利用Arrhenius 材料本构关系, 构建了7022 铝合金的材料本构方程。结果表明: 在应变速率和变形温度的综合影响下,7022 铝合金的峰值流变应力随着应变速率的增加以及变形温度的下降而升高, 在变形温度为350 ℃、应变速率为10 s-1 的形变条件下流变应力达到最大, 为156. 0 MPa。并通过拟合曲线等方式得到7022 铝合金的热激活能为144. 332 kJ·mol-1。

 

 [1]  刘杰. 7N01 铝合金高温变形行为研究[D]. 长沙: 湖南大学, 2008.

Liu J. Deformation Behavior of 7N01 Aluminum Alloy During Hot Compression Deformation at Elevated Temperature [D]. Changsha:Hunan University, 2008.
[2]  张树国, 裴桓伟, 杨湘杰. Al-Zn-Mg-Cu 合金半固态成形的研究现状与应用[J]. 精密成形工程, 2020, 12 (3): 67-73.
Zhang S G, Pei H W, Yang X J. Research status and application of semi-solid forming of Al-Zn-Mg-Cu alloy [J]. Journal of Netshape Forming Engineering, 2020, 12 (3): 67-73.
[3]  汪建强, 郭丽丽, 李永兵, 等. 6016 铝合金板材室温成形性及其数值模拟[J]. 塑性工程学报, 2018, 25 (2): 43-51.
Wang J Q, Guo L L, Li Y B, et al. Formability and numerical simulation of 6016 aluminum alloy sheet at room temperature [J]. Journal of Plasticity Engineering, 2018, 25 (2): 43-51.
[4]  敖斌秋. 轻量化汽车材料技术的最新动态[J]. 汽车工艺与材料, 2002, (Z1): 1-21.
Ao B Q. The latest development of lightweight automotive material technology [ J ]. Automobile Technology & Material, 2002, (Z1): 1-21.
[5]  倪炀, 蔡玉俊, 董晓传, 等. 7075 铝合金高温力学性能及本构方程研究[J]. 塑性工程学报, 2020, 27 (2): 128-134.
Ni Y, Cai Y J, Dong X C, et al. Study on high temperature mechanical properties and constitutive equation of 7075 aluminum alloy [J]. Journal of Plasticity Engineering, 2020, 27 (2): 128-
134.
[6]  Jr E A S, Staley J T. Application of modern aluminum alloys to aircraft [J]. Progress in Aerospace Sciences, 1996, 32 (2/3):131-172.
[7]  Su R M, Qu Y D, Li R D, et al. Influence of RRA treatment on the microstructure and stress corrosion cracking behavior of the spray-formed 7075 alloy [J]. Materials Science, 2015, 51 (3):372-380.
[8]  殷剑, 黎诚, 金康, 等. 铝合金汽车前下摆臂成形工艺的有限元模拟与优化[J]. 锻压技术, 2021, 46 (11): 74-82.
Yin J, Li C, Jin K, et al. Finite element simulation and optimization of the forming process of the aluminum alloy front lower sway arm of automobile [J]. Forging & Stamping Technology, 2021,46 (11): 74-82.
[9]  Prasad N E, Wanhill R. Aerospace materials and material technologies [M]. Singapore: Springer, 2017.
[10] 殷剑, 金康, 黎诚. 时效处理对7022 铝合金组织与性能的影响[J]. 材料热处理学报, 2022, 43 (2): 49-57.
Yin J, Jin K, Li C. Effect of aging treatment on microstructure and properties of 7022 aluminum alloy [J]. Transactions of Materials and Heat Treatment, 2022, 43 (2): 49-57.
[11] 黎诚, 殷剑, 金康. 时效处理对7022 铝合金力学性能和导电率的影响[J]. 材料热处理学报, 2021, 42 (12): 61-68.
Li C, Yin J, Jin K. Effect of aging treatment on mechanical properties and electrical conductivity of 7022 aluminum alloy [ J].Transactions of Materials and Heat Treatment, 2021, 42 (12):
61-68.
[12] 韦韡, 蒋鹏, 曹飞. 6082 铝合金的高温本构关系[J]. 塑性工程学报, 2013, 20 (2): 100-106.
Wei W, Jiang P, Cao F. Constitutive equations for hot deformation of 6082 aluminum alloy [J]. Journal of Plasticity Engineering,2013, 20 (2): 100-106.
[13] 张彦敏, 陈赛, 葛学元, 等. 6082 铝合金热变形行为及热加工图[J]. 塑性工程学报, 2018, 25 (4): 113-121.
Zhang Y M, Chen S, Ge X Y, et al. Hot deformation behavior and processing map of aluminum alloy 6082 [J]. Journal of Plasticity Engineering, 2018, 25 (4): 113-121.
[14] 李建平, 夏祥生. 挤压态Mg-Gd-Y-Zn-Zr 合金本构方程及加工图[J]. 精密成形工程, 2022, 14 (2): 95-100.
Li J P, Xia X S. Constitutive equation and processing map of an as-extruded Mg-Gd-Y-Zn-Zr alloy [J]. Journal of Netshape Forming Engineering, 2022, 14 (2): 95-100.
[15] 陈睿, 温仕成, 王旭, 等. 7150-T6 铝合金动态特性实验及本构方程研究[J]. 机械科学与技术, 2022, (8): 1270-1277.
Chen R, Wen S C, Wang X, et al. Experimental study of dynamic characteristics and constitutive equation of 7150-T6 aluminum alloy [J]. Mechanical Science and Technology for Aerospace Engineering,2022, (8): 1270-1277.
[16] 沈文涛, 张鹏, 高蕾, 等. 7050 铝合金热压缩本构方程[J]. 大型铸锻件, 2016, (6): 1-3. Shen W T, Zhang P, Gao L, et al. Constitutive equation of hot compression for 7050 aluminum alloy [ J]. Heavy Casting and Forging, 2016, (6): 1-3.
[17] 张腾, 周友龙, 刘拥军, 等. 6061 铝合金车体搅拌摩擦焊接接头微型剪切试验研究[J]. 电焊机, 2012, 42 (10): 92-95.   
Zhang T, Zhou Y L, Liu Y J, et al. Research of the FSW joint of 6061 aluminum alloy by mini-shear-testing [J]. Electric Welding Machine, 2012, 42 (10): 92-95.
[18] 任发才. 马氏体不锈钢热变形行为及汽轮机叶片热锻过程多物理场数值仿真研究[D]. 上海: 上海交通大学, 2014.
Ren F C. Research on Hot Deformation Behavior of Martensitic Stainless Steel and Multi-physics Numerical Simulation of Turbine Blade Hot Forging [D]. Shanghai: Shanghai Jiao Tong University,2014.
[19] 李轩颖, 徐雪峰, 王继, 等. 基于薄壁环压缩的铝合金管材应力-应变行为[J]. 中国有色金属学报, 2017, 27 (10):2020-2028.
Li X Y, Xu X F, Wang J, et al. Stress-strain behavior of aluminum alloy pipe based on thin-walled ring compression [J]. The Chinese Journal of Nonferrous Metals, 2017, 27 (10): 2020-
2028.
[20] 王思秋. Ti-22Al-25Nb 合金粉末冶金制备及组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
Wang S Q. Microstructure and Mechanical Properties of Ti-22Al-25Nb Alloy Prepared by Power Metallurgy Route [D]. Harbin: Harbin Institute of Technology, 2016.
[21] 刘文超. 粉末冶金Ti-22Al-25Nb 合金制备与微观组织研究[D]. 秦皇岛: 燕山大学, 2019.
Li W C. Microstructure and Mechanical Properties of Ti-22Al-25Nb Alloy Prepared by Powder Metallurgy Route [ D]. Qinhuangdao: Yanshan University, 2019.
[22] 陈泽中, 李文传, 李响, 等. 工艺参数对铝合金微槽道挤压成形的影响[ J]. 有色金属材料与工程, 2019, 40 (1):27-32, 37.
Chen Z Z, Li W C, Li X, et al. Effect of process parameters on isothermal extrusion forming of aluminum alloy microchannels [J]. Nonferrous Metal Materials and Engineering, 2019, 40
(1): 27-32, 37.
[23] 盈亮, 戴明华, 胡平, 等. 6061-T6 铝合金高温本构模型及温成形数值模拟[J]. 中国有色金属学报, 2015, 25 (7):1815-1821.
Ying L, Dai M H, Hu P, et al. Thermal constitutive model and numerical simulation of hot forming for 6061-T6 aluminum alloy [J]. The Chinese Journal of Nonferrous Metals, 2015, 25 (7):
1815-1821.
[24] 赵业青, 李岩, 鲁法云, 等. 7150 铝合金热变形行为及微观组织[J]. 航空材料学报, 2015, 35 (3) : 18-23.
Zhao Y Q, Li Y, Lu F Y, et al. Flow stress behavior and microstructure of 7150 aluminum alloys during hot deformation [J]. Journal of Aeronautical Materials, 2015, 35 (3): 18-23.
[25] 郭道强, 孟显娜, 张辉. Al-Mn-Mg-RE 铝合金高温热压缩变形行为的研究[J]. 热加工工艺, 2012, 41 (2): 91-94.
Guo D Q, Meng X N, Zhang H. Hot deformation behavior of Al-Mn-Mg-RE alloy during compression at elevated temperature [J]. Hot Working Technology, 2012, 41 (2): 91-94.
[26] 李银华. 微合金化CuNiSi 系合金时效及热变形行为研究[D]. 洛阳: 河南科技大学, 2008.
Li Y H. Study on aging and thermal deformation behavior of CuNi-Si series alloys [D]. Luoyang: Henan University of Science and Technology, 2008.
[27] 李萍, 朱慧玲, 严思梁, 等. 低活化马氏体钢热变形行为及机理型本构建模研究[ J]. 原子能科学技术, 2020, 54(10): 1904-1911.
Li P, Zhu H L, Yan S L, et al. Hot deformation behavior and physically based constitude modeling of low activation martensitic steel [ J]. Atomic Energy Science and Technology, 2020, 54
(10): 1904-1911.
[28] 张青云. 基于ABAQUS 的皮质骨钻削性能的仿真和试验研究[D]. 天津: 天津理工大学, 2014.
Zhang Q Y. Finite Element Analysis and Experimental Research of Cortical Bone Drilling Performance Based on ABAQUS [D]. Tianjin:Tianjin University of Technology, 2014.
[29] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high rates and high temperatures [A].Processing of the Seventh International Symposium on Ballistics[C]. Hague, 1983.
[30] Frank J Z, Ronald W A. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61 (5): 1816-1825.
[31] 易幼平, 杨积慧, 蔺永诚. 7050 铝合金热压缩变形的流变应力本构方程[J]. 材料工程学报, 2007, (4): 20-22.
Yi Y P, Yang J H, Lin Y C. Flow stress constitutive equation of 7050 aluminum alloy during hot compression [J]. Journal of Materials Engineering, 2007, (4): 20-22.
[32] Cho J R, Jeong H S, Cha D J, et al. Prediction of microstructural evolution and recrystallization behaviors of a hot working die steel by FEM [J]. Journal of Materials Processing Technology, 2005, 160 (1): 1-8.
[33] 王倩倩, 王强, 张治民, 等. 铝钨粉末合金挤压成形工艺研究[J]. 热加工工艺, 2014, 43 (21): 1-4.
Wang Q Q, Wang Q, Zhang Z M, et al. Study on extrusion forming technology of Al-W alloy powder [J]. Hot Working Technology,2014, 43 (21): 1-4.
[34] 张彦敏, 王永健, 陈赛, 等. Cu-Al2O3 (0. 68%) 弥散强化铜合金塑性变形特性[J]. 精密成形工程, 2017, 9 (5):128-133.
Zhang Y M, Wang Y J, Chen S, et al. Plastic deformation characteristics of Cu-Al2O3 (0. 68%) dispersion strengthened copper alloy[ J]. Journal of Netshape Forming Engineering, 2017, 9
(5): 128-133.
[35] 李红英, 赵菲, 刘丹, 等. 工程机械用Q1100 钢的热变形应变补偿本构方程[J]. 中南大学学报: 自然科学版, 2020,51 (3): 608-618.
Li H Y, Zhao F, Liu D, et al. Thermal deformation strain compensation constitutive equation for Q1100 steel for construction machinery [J]. Journal of Central South University: Science and
Technology, 2020, 51 (3): 608-618.
[36] 王战锋, 张辉, 张昊, 等. 喷射沉积5A06 铝合金热压缩变形的流变应力行为[J]. 中国有色金属学报, 2006, (11):1938-1944.
Wang Z F, Zhang H, Zhang H, et al. Flow stress behaviors of spray-deposited 5A06 aluminum alloy under hot compression deformation [J]. The Chinese Journal of Nonferrous Metals, 2006,(11): 1938-1944.
[37] 苗建芸. 5083 铝合金的超塑性研究[D]. 南京: 南京航空航天大学, 2008.
Miao J Y. Research on the Superplasticity of Aluminium Alloy 5083 [D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2008.

 

基金项目:
作者简介:
作者简介: 殷 剑(1997-), 男, 硕士 E-mail: a18726451924@ 163. com 通信作者: 金 康(1978-), 男, 硕士, 高级工程师 E-mail: jinkang@ cmipf. com
参考文献:

 During the plastic forming process, the metal is in a three-directional stress state in the die cavity and its deformation temperature is in the dynamic change with the rheological strain, and the rheological stress of alloy is affected by many factors such as deformation temperature, deformation amount and so on. Therefore, the relationships among rheological stress, deformation temperature and strain rate at the temperature of 350, 400 and 450 ℃, the strain rates of 0. 01, 0. 1, 1 and 10 s-1 and the total deformation amount of 50% were studied respectively by high temperature compression simulation test and finite element analysis software, and the material constitutive equation of 7022 aluminum alloy was established by using the Arrhenius material constitutive relation. The results show that under the comprehensive influence of strain rate and deformation temperature, the peak rheological stress of 7022 aluminum alloy increases with the increasing of strain rate and the decreasing of deformation temperature, the rheological stress reaches the maximum value of 156. 0 MPa in the deformation condition of the deformation temperature of 350 ℃ and the strain rate of 10 s-1, and the thermal activation energy of 7022 aluminum alloy is obtained to be 144. 332 kJ·mol-1 by fitting the curve and other methods.Key words: 7022 aluminum alloy; hot deformation; high temperature mechanical properties

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9