[1] 万霄, 陈瑞航, 王颜, 等. 热处理工艺对H13 热作模具钢组织与性能的影响[J]. 宽厚板, 2020, 26 (5): 18-22, 35.
Wan X, Chen R H, Wang Y, et al. Effect of heat treatment process on microstructure and properties of H13 hot work die steel [J]. Wide and Thick Plate, 2020, 26 (5): 18-22, 35.
[2] 吴晓春, 左鹏鹏. 国内外热作模具钢发展现状与趋势[J].模具工业, 2022, (10): 1-9.
Wu X C, Zuo P P. Development status and trend of hot work die steel at home and abroad [ J]. Die & Mould Industry, 2022,(10): 1-9.
[3] 施渊吉, 吴晓春, 闵娜. Fe-Cr-Mo-W-V 系热作模具钢高温热稳定性机理研究[J]. 材料导报, 2018, 32 (6): 930-936,956.
Shi Y J, Wu X C, Min N. Study on thermal stability mechanism of Fe-Cr-Mo-W-V hot work die steel at high temperature [J]. Materials Review, 2018, 32 (6): 930-936, 956.
[4] 李腾. 700 MPa 级汽车大梁钢的动态再结晶与数值模拟[D].镇江: 江苏大学, 2019.
Li T. Dynamic Recrystallization and Numerical Simulation of 700 MPa Automotive Beam Steel [D]. Zhenjiang: Jiangsu University,2019.
[5] 王家文, 王岩, 陈前, 等. GH4169 合金动态再结晶的有限元模拟与实验研究[J]. 粉末冶金材料科学与工程, 2014, 19(4): 499-507.
Wang J W, Wang Y, Chen Q, et al. Finite element simulation and experimental study on dynamic recrystallization of GH4169 alloy [J ]. Powder Metallurgy Materials Science and Engineering,2014, 19 (4): 499-507.
[6] 王红亮. Deform-3D 有限元模拟技术在齿轮加工中的应用与前景[J]. 世界有色金属, 2019, (5): 287, 289.
Wang H L. Application and prospect of Deform-3D finite element simulation technology in gear machining [J]. World Nonferrous Metals, 2019, (5): 287, 289.
[7] Jang Y S, Ko D C, Kim B M. Application of the finite element method to predict microstructure evolution in the hot forging of steel [J]. Journal of Materials Processing Technology, 2000, 101(1): 85-94.
[8] Irani M, Lim S, Joun M. Experimental and numerical study on the temperature sensitivity of the dynamic recrystallization activation energy and strain rate exponent in the JMAK model [ J]. J. Mater. Res. Technol. , 2018. https: / / doi. rog/10. 1016/ j. jmrt.2018. 11. 007.
[9] 李晔. GWZK134 合金热变形过程动态再结晶行为研究及仿真模拟[D]. 太原: 中北大学, 2019.
Li Y. Dynamic Recrystallization Behavior and Simulation of GWZK134 Alloy During Hot Deformation [ D]. Taiyuan: North University of China, 2019.
[10] 冯瑞, 王克鲁, 鲁世强, 等. BT25 钛合金β 相区动态再结晶行为及数值模拟[ J]. 稀有金属材料与工程, 2021, 50(3): 894-901.
Feng R, Wang K L, Lu S Q, et al. Dynamic recrystallization behavior and numerical simulation of β phase zone of BT25 titanium alloy [J]. Rare Metal Materials and Engineering, 2021, 50 (3):894-901.
[11] 陈明明. 316LN 不锈钢锻造过程晶粒演变规律实验与模拟研究[D]. 太原: 太原科技大学, 2010.
Chen M M. Experimental and Simulation Study on Grain Evolution of 316LN Stainless Steel During Forging [D]. Taiyuan: Taiyuan University of Science and Technology, 2010.
[12] 董明振, 闫永明, 欧阳雪枚, 等. 17Cr2Ni2MoVNb 和20Cr2Ni4A 齿轮钢的热变形行为[J]. 锻压技术, 2022, 47 (9): 230-237.
Dong M Z, Yan Y M, Ouyang X M, et al Hot deformation behavior of 17Cr2Ni2MoVNb and 20Cr2Ni4A gear steels [J]. Forging & Stamping Technology, 2022, 47 (9): 230-237.
[13] Yan Z J, Dang S E, Wang X H, et al. Applicability of Johnson-Mehl-Avrami model to crystallization kinetics of Zr_(60)Al_(15)Ni_ (25) bulk amorphous alloy [J]. Transactions of Nonferrous Metals Society of China, 2008, (1): 138-144.
[14] 孙宇, 周琛, 万志鹏, 等. 金属材料动态再结晶模型研究现状[J]. 材料导报, 2017, 31 (13): 12-16.
Sun Y, Zhou C, Wan Z P, et al. Research status of dynamic recrystallization models of metallic materials [J]. Materials Guide, 2017, 31 (13): 12-16.
[15] Poliak E I, Jonas J J. Inaitiation of dynamic recystalliztion inconstantstrain hot deformation [J]. ISIJ Inter. , 2003, 43 (5):684-691.
[16] 吴晓东, 王联进, 谢坚锋, 等. F45MnVS 非调质钢动态再结晶模型与晶粒尺寸数值模拟[J]. 机械工程材料, 2021, 45(10): 84-90.
Wu X D, Wang L J, Xie J F, et al. Dynamic recrystallization model and numerical simulation of grain size in F45MnVS nonquenched-tempered steel [J]. Materials for Mechanical Engineering,2021, 45 (10): 84-90.
|