网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
H156 热作模具钢动态再结晶的实验与数值模拟研究
英文标题:Experiment and numerical simulation study on dynamic recrystallization for H156 hot work die steel
作者:杜 帅  李 颖  李 敏  何文武 
单位:太原科技大学 
关键词:H156 热作模具钢  动态再结晶模型  微观组织  变形温度  应变速率 
分类号:TG142. 5
出版年,卷(期):页码:2023,48(1):245-252
摘要:

 通过Gleeb-1500D 热模拟机, 对H156 热作模具钢进行单道次热压缩实验。实验中, 变形温度控制在850~1220 ℃, 应变速率控制在0. 001~1 s-1, 真应变为0. 7。通过采集数据获得真应力-真应变曲线, 得出流变应力与热变形参数之间的数学关系, 建立了动态再结晶模型, 并借助光学显微镜对不同热变形参数下实验样品的微观组织进行观察分析, 建立了晶粒尺寸模型。通过DEFORM-3D 有限元软件对H156 热作模具钢的动态再结晶行为进行模拟, 探究热变形参数对实验材料动态再结晶(DRX) 行为的影响。结果表明: 随着变形温度的增加, DRX 体积分数增加, DRX 晶粒分布越均匀; 较大的应变速率会导致变形时间缩短, DRX 区域减小, 细小晶粒缺少充足的时间发生形核长大。因此, 提高变形温度、降低应变速率有助于动态再结晶的完成。数值模拟结果与实验结果较吻合, 验证了模型的准确性。

 For H156 hot work die steel, a single-pass thermal compression experiment was conducted by Gleeb-1500D thermal simulator under the deformation temperature of 850-1220 ℃, the strain rate of 0. 001-1 s-1 and the true strain of 0. 7, and the true stress-true strain curve was obtained by collected data. Then, the mathematical relationship between rheological stress and thermal deformation parameters was obtained, and a dynamic recrystallization model was established. Furthermore, the microstructure of experimental samples under different thermal deformation parameters was observed and analyzed by optical microscope, and the grain size model was established.Finally, the dynamic recrystallization behavior of H156 hot work die steel was simulated by finite element software DEFORM-3D, and the influences of thermal deformation parameters on the dynamic recrystallization behavior of experimental materials were explored. The results show that with the increasing of deformation temperature, and the DRX volume fraction increases, the distribution of DRX grains becomes more uniform. A large strain rate shortens the deformation time, reduces the DRX area, and the fine grains lack sufficient time for nucleation and growth. Therefore, increasing the deformation temperature and decreasing the strain rate are conducive to the completion of dynamic recrystallization, and the numerical simulation results are consistent with the experimental results, which verifies the accuracy of the model.

 

基金项目:
山西省重点学科建设经费资助项目(2019KJ029)
作者简介:
作者简介: 杜 帅(1996-), 男, 硕士 E-mail: 18734599322@ qq. com 通信作者: 何文武(1977-), 男, 博士, 教授 E-mail: hwwssl@ 126. com
参考文献:

 [1]  万霄, 陈瑞航, 王颜, 等. 热处理工艺对H13 热作模具钢组织与性能的影响[J]. 宽厚板, 2020, 26 (5): 18-22, 35.


Wan X, Chen R H, Wang Y, et al. Effect of heat treatment process on microstructure and properties of H13 hot work die steel [J]. Wide and Thick Plate, 2020, 26 (5): 18-22, 35.

[2]  吴晓春, 左鹏鹏. 国内外热作模具钢发展现状与趋势[J].模具工业, 2022, (10): 1-9.

Wu X C, Zuo P P. Development status and trend of hot work die steel at home and abroad [ J]. Die & Mould Industry, 2022,(10): 1-9.

[3]  施渊吉, 吴晓春, 闵娜. Fe-Cr-Mo-W-V 系热作模具钢高温热稳定性机理研究[J]. 材料导报, 2018, 32 (6): 930-936,956.

Shi Y J, Wu X C, Min N. Study on thermal stability mechanism of Fe-Cr-Mo-W-V hot work die steel at high temperature [J]. Materials Review, 2018, 32 (6): 930-936, 956.

[4]  李腾. 700 MPa 级汽车大梁钢的动态再结晶与数值模拟[D].镇江: 江苏大学, 2019.

Li T. Dynamic Recrystallization and Numerical Simulation of 700 MPa Automotive Beam Steel [D]. Zhenjiang: Jiangsu University,2019.

[5]  王家文, 王岩, 陈前, 等. GH4169 合金动态再结晶的有限元模拟与实验研究[J]. 粉末冶金材料科学与工程, 2014, 19(4): 499-507.

Wang J W, Wang Y, Chen Q, et al. Finite element simulation and experimental study on dynamic recrystallization of GH4169 alloy [J ]. Powder Metallurgy Materials Science and Engineering,2014, 19 (4): 499-507.

[6]  王红亮. Deform-3D 有限元模拟技术在齿轮加工中的应用与前景[J]. 世界有色金属, 2019, (5): 287, 289.

Wang H L. Application and prospect of Deform-3D finite element simulation technology in gear machining [J]. World Nonferrous Metals, 2019, (5): 287, 289.

[7]  Jang Y S, Ko D C, Kim B M. Application of the finite element method to predict microstructure evolution in the hot forging of steel [J]. Journal of Materials Processing Technology, 2000, 101(1): 85-94.

[8]  Irani M, Lim S, Joun M. Experimental and numerical study on the temperature sensitivity of the dynamic recrystallization activation energy and strain rate exponent in the JMAK model [ J]. J. Mater. Res. Technol. , 2018. https: / / doi. rog/10. 1016/ j. jmrt.2018. 11. 007.  

[9]  李晔. GWZK134 合金热变形过程动态再结晶行为研究及仿真模拟[D]. 太原: 中北大学, 2019.

Li Y. Dynamic Recrystallization Behavior and Simulation of GWZK134 Alloy During Hot Deformation [ D]. Taiyuan: North University of China, 2019.

[10] 冯瑞, 王克鲁, 鲁世强, 等. BT25 钛合金β 相区动态再结晶行为及数值模拟[ J]. 稀有金属材料与工程, 2021, 50(3): 894-901.

Feng R, Wang K L, Lu S Q, et al. Dynamic recrystallization behavior and numerical simulation of β phase zone of BT25 titanium alloy [J]. Rare Metal Materials and Engineering, 2021, 50 (3):894-901.

[11] 陈明明. 316LN 不锈钢锻造过程晶粒演变规律实验与模拟研究[D]. 太原: 太原科技大学, 2010.

Chen M M. Experimental and Simulation Study on Grain Evolution of 316LN Stainless Steel During Forging [D]. Taiyuan: Taiyuan University of Science and Technology, 2010.

[12] 董明振, 闫永明, 欧阳雪枚, 等. 17Cr2Ni2MoVNb 和20Cr2Ni4A 齿轮钢的热变形行为[J]. 锻压技术, 2022, 47 (9): 230-237.

Dong M Z, Yan Y M, Ouyang X M, et al Hot deformation behavior of 17Cr2Ni2MoVNb and 20Cr2Ni4A gear steels [J]. Forging & Stamping Technology, 2022, 47 (9): 230-237.

[13] Yan Z J, Dang S E, Wang X H, et al. Applicability of Johnson-Mehl-Avrami model to crystallization kinetics of Zr_(60)Al_(15)Ni_ (25) bulk amorphous alloy [J]. Transactions of Nonferrous Metals Society of China, 2008, (1): 138-144.

[14] 孙宇, 周琛, 万志鹏, 等. 金属材料动态再结晶模型研究现状[J]. 材料导报, 2017, 31 (13): 12-16.

Sun Y, Zhou C, Wan Z P, et al. Research status of dynamic recrystallization models of metallic materials [J]. Materials Guide, 2017, 31 (13): 12-16.

[15] Poliak E I, Jonas J J. Inaitiation of dynamic recystalliztion inconstantstrain hot deformation [J]. ISIJ Inter. , 2003, 43 (5):684-691.

[16] 吴晓东, 王联进, 谢坚锋, 等. F45MnVS 非调质钢动态再结晶模型与晶粒尺寸数值模拟[J]. 机械工程材料, 2021, 45(10): 84-90.

Wu X D, Wang L J, Xie J F, et al. Dynamic recrystallization model and numerical simulation of grain size in F45MnVS nonquenched-tempered steel [J]. Materials for Mechanical Engineering,2021, 45 (10): 84-90.

 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9