网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
电弧增材制造耐磨钢的组织结构与摩擦学性能
英文标题:Microstructure and tribological properties on wear resistant steel prepared by wire+arc additive manufacturing
作者:胡瑞章1 郭纯1 营梦1 吴随松2 
单位:1.安徽科技学院 2.安徽工程大学 
关键词:耐磨钢 电弧增材制造 组织结构 摩擦学性能 力学性能 
分类号:TG146
出版年,卷(期):页码:2023,48(2):194-202
摘要:

研究了电弧增材制造耐磨钢的组织结构、力学性能和摩擦学性能。结果表明:电弧增材制造耐磨钢试样的外观形貌质量良好,未发现气孔、裂纹等缺陷,试样内部为良好的冶金结合,金相组织主要为马氏体;透射电镜结果显示,电弧增材制造耐磨钢试样的晶体结构为马氏体,试样中存在碳化物、夹杂物和位错;试样截面在纵向和横向显微硬度分布有较大波动,其截面纵向和横向的平均显微硬度分别为601和597 HV0.5;试样的室温屈服强度为1112 MPa,抗拉强度为1259 MPa,室温下试样夏比冲击值的均值为4.2 J;电弧增材制造耐磨钢试样在载荷为5~25 N的摩擦磨损测试条件下的磨损率约为10-6~10-5 mm3·(N·m)-1 量级,摩擦因数为0.24~0.69,具有较好的耐磨性能。

 Microstructure, mechanical properties and tribological properties of wear resistant steel prepared by wire+arc additive manufacturing (WAAM) were studied. The results show that the appearance of the wear resistant steel sample prepared by WAAM is of good quality,and no defects such as pores and cracks are found. The inside of sample is a good metallurgical bond, and the metallographic structure is mainly martensite. TEM results show that its crystal structure is martensite, and there are carbides, inclusions and dislocations in the sample. The cross-sectional microhardness distributions of the sample in the longitudinal and transverse directions have large fluctuations, and the average microhardness values of the cross-section in the longitudinal and transverse directions are 601 and 597 HV0.5 respectively. The tensile yield strength of the sample at room temperature is 1112 MPa, and the tensile strength is 1259 MPa, and the average Charpy impact value is 4.2 J at room temperature. The wear rate of the wear resistant steel sample prepared by WAAM is about 10-6-10-5 mm3·(N·m)-1 magnitude in the condition of 5-25 N friction and wear test, and the friction coefficient is 0.24-0.69, which has excellent wear resistance properties.

基金项目:
装备预研项目(61409230612);安徽省高校优秀拔尖人才项目(gxbjZD2022046);安徽省高校科学研究项目(YJS20210558);安徽省高校协同创新项目(GXXT-2019-022);安徽科技学院学术和技术带头人后备人选项目(202101);安徽省自然科学基金资助项目(1908085QE174);安徽科技学院人才项目(RCYJ201905)
作者简介:
作者简介:胡瑞章(1983-),女,学士,实验师,E-mail:hurzh@ahstu.edu.cn;通信作者:郭纯(1984-),男,博士,教授,E-mail:guochun@ahstu.edu.cn
参考文献:

 [1]毕甲紫, 刘晓斌, 李然, . 非晶合金粉末作为润滑油添加剂的摩擦学性能 [J]. 金属学报, 2021, 57(4): 559-566.


Bi J Z, Liu X B, Li R, et al. Tribological properties of polyalpha-olefin (PAO6) lubricant modified with particles additives of metal-lic glass [J]. Acta Metallurgica Sinica, 2021, 57(4): 559-566.


[2]Huang S, Yu Y S, Wang Z Q, et al. Crystallographic insights into the role of nickel on hardenability of wear-resistant steels [J]. Materials Letters, 2022, 306(1): 130961.1-130961.4.


[3]dám K, Patrick D B, Haithem B H, et al. Tribological investigation of abrasion resistant steels with martensitic and retained austenitic microstructure in single- and multi-asperity contact [J]. Wear, 2021, 482-483(10): 203980-203995.


[4]Dong C, Wu H B, Wang X T.Effect of cooling rate on microstructure, hardness, and residual stress of 0.28C-0.22Ti wear-resistant steel [J].Journal of Iron and Steel Research International, 2019, 26(5): 866-874.


[5]Yao Z, Liu M, Hu H, et al. Microstructure and wear properties of a bainite/martensite multi-phase wear resistant steel [J]. ISIJ International, 2021, 61(1): 434-441.


[6]Konat , Jasiński R, Biaobrzeska B, et al. Analysis of the static and dynamic properties of wear-resistant Hardox 600 steel in the context of its application in working elements [J]. Materials Science-Poland, 2021, 39(1): 86-102.


[7]李冠楠, 雷明钢, 陈昊天, . 非调质NM400复相耐磨钢的相变行为 [J]. 金属热处理, 2022, 47(12): 228-233.


Li G N, Lei M G, Chen H T, et al. Phase transformation behavior of non-quenched and tempered NM400 multiphase wear-resistant steel [J]. Heat Treatment of Meatls,2022, 47(12): 228-233.


[8]Kamimiyada K, Ishikawa S, Miyahara H, et al. Effect of MC type carbides on wear resistance of high wear resistant cast iron rolls developed for work rolls of hot strip mills [J]. ISIJ International, 2021, 61(10): 2597-2604.


[9]Konat L, Zemlik M, Jasinski R, et al. Austenite grain growth analysis in a welded joint of high-strength martensitic abrasion-resistant steel hardox 450 [J]. Materials (Basel), 2021, 14(11): 2850-2895.


[10]Shilyaev P V, Bogach D I, Krasnov M L, et al. Mechanical properties and structural state of rolled sheets from high-strength wear-resistant weldable steel H500 magstrong[J]. Metal Science and Heat Treatment, 2021, 62(11-12): 664-668.


[11]Martín D V, NietoM A, Morcuende D, et al. 3D printed floating photocatalysts for wastewater treatment [J]. Catalysis Today, 2019, 328:157-163.


[12]郭纯, 马明亮, 胡瑞章, . 电弧增材制造舰船用高强钢10CrNi3MoV的组织及性能 [J]. 材料导报, 2019, 33(S2): 455-459.


Guo C, Ma M L, Hu R Z, et al. Microstructure and properties of 10CrNi3MoV high strength steel for naval ship made by wire+arc additive manufacturing [J]. Materials Reports,2019, 33(S2)455-459.


[13]洪小英, 肖贵乾, 权国政. 汽车曲轴热锻模焊锻复合电弧熔丝自动增材制造工艺 [J]. 锻压技术, 2022, 47(4): 170-175.


Hong X Y, Xiao G Q, Quan G Z. Automatic additive manufacturing of arc fuse welding and forging composite for auto crankshaft hot forging mold [J]. Forging Stamping Technology,2022, 47(4): 170-175.


[14]Kumar R, Antonov M, Beste U, et al. Assessment of 3D printed steels and composites intended for wear applications in abrasive, dry or slurry erosive conditions [J]. International Journal of Refractory Metals and Hard Materials, 2020, 86: 105126-105135.


[15]Lemke J N, Casati R, Lecis N, et al. Design of wear-resistant austenitic steels for selective laser melting [J]. Metallurgical and Materials Transactions A, 2018, 49(3): 962-971.


[16]Watanabe T, Tabuchi M, Yamazaki M, et al. Creep damage evaluation of 9Cr-1Mo-V-Nb steel welded joints showing type IV fracture [J]. International Journal of Pressure Vessels and Piping, 2006, 83(1): 63-71.


[17]Guguloth K, Roy N. Study on the creep deformation behavior and characterization of 9Cr-1Mo-V-Nb steel at elevated temperatures [J]. Materials Characterization, 2018, 146: 279-298.


[18]GB/T 24186—2009,工程机械用高强度耐磨钢板[S].


GB/T 24186—2009High strength abrasion resistant steel plats for construction machine [S].

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9