[1]侯政良, 王柱飞, 张雪冬, 等. 热处理工艺对34CrNiMo6钢性能的影响研究[J]. 精密成形工程, 2018, 10(6): 38-42.
Hou Z L, Wang Z F, Zhang X D, et al. Effects of heat treatment on performance of 34CrNiMo6 steel[J]. Journal of Netshape Forming Engineering, 2018, 10(6): 38-42.
[2]康凤, 杨鄂川, 林军, 等. 曲轴用34CrNiMo6高强结构钢的热变形行为研究[J]. 材料导报, 2013, 27(4): 49-51,55.
Kang F, Yang E C, Lin J, et al. Study on hot deformation behavior of high strength construction steel 34CrNiMo6 for crankshafts[J]. Materials Review, 2013, 27(4): 49-51,55.
[3]郭浩, 尚勇, 魏金. 热处理温度对34CrNiMo6钢组织与力学性能的影响[J]. 热加工工艺, 2019, 48(24):170-173.
Guo H, Shang Y, Wei J. Effects of heat treatment temperature on microstructure and mechanical properties of 34CrNiMo6 steel[J]. Hot Working Technology, 2019, 48(24):170-173.
[4]方琴, 陈庚, 吴永波, 等. 热处理对34CrNiMo6钢组织和力学性能的影响[J]. 铸造技术, 2017, 38(8):1866-1867,1871.
Fang Q, Chen G, Wu Y B, et al. Influence of heat treatment on microstructure and mechanical properties of 34CrNiMo6 steel[J]. Foundry Technology, 2017, 38(8):1866-1867,1871.
[5]郑福胜. 热处理工艺对34CrNiMo6组织性能的影响[D]. 沈阳:东北大学, 2018.
Zheng F S. Effect of Heat Treatment Process on Microstructure and Properties of 34CrNiMo6[D]. Shenyang:Northeastern University, 2018.
[6]蔡红, 叶俭, 王丽莲, 等. 高铁车轴用34CrNiMo6钢的热处理工艺[J]. 金属热处理, 2012, 37(4):95-98.
Cai H, Ye J, Wang L L, et al. Heat treatment process of 34CrNiMo6 steel for high-speed railway axle[J]. Heat Treatment of Metals, 2012, 37(4):95-98.
[7]张赟凯, 杜诗文. 34CrNiMo6钢的热变形行为及热加工图研究[J]. 锻压装备与制造技术, 2021, 56(3):97-105.
Zhang Y K, Du S W. Research on the hot deformation behavior and hot working map of 34CrNiMo6 steel[J]. China Metalforming Equipment & Manufacturing Technology, 2021, 56(3):97-105.
[8]胡丰泽, 张波, 马茂, 等. 舰船柴油机用34CrNiMo6钢工艺性能的研究[J]. 机械管理开发, 2011, (3): 12-13, 15.
Hu F Z, Zhang B, Ma M, et al. Research on 34CrNiMo6 processing property used for naval vessel engines[J]. Mechanical Management and Development, 2011, (3): 12-13, 15.
[9]尹小燕, 刘兴凯, 丁宏翔,等. HNi55-7-4-2合金高温本构模型修正及变形激活能演化规律[J]. 锻压技术, 2021, 46(7):221-228.
Yin X Y, Liu X K, Ding H X, et al. High temperature constitutive model modification and evolution law of deformation activation energy for HNi55-7-4-2 alloy[J]. Forging & Stamping Technology, 2021, 46(7):221-228.
[10]陈园园, 李永堂, 庞晓龙, 等. 考虑应变补偿的铸态42CrMo钢本构模型[J]. 锻压技术, 2021, 46(5):246-252.
Chen Y Y, Li Y T, Pang X L, et al. Constitutive model of as-cast 42CrMo steel based on strain compensation[J]. Forging & Stamping Technology, 2021, 46(5):246-252.
[11]王天祥, 鲁世强, 王克鲁, 等. Ti60合金的流动应力行为及本构关系[J]. 塑性工程学报, 2019, 26(6):271-279.
Wang T X, Lu S Q, Wang K L, et al. Flow stress behavior and constitutive relationship of Ti60 alloy[J]. Journal of Plasticity Engineering, 2019, 26(6):271-279.
[12]张龙, 王东城, 马晓宝, 等. 30Cr2Ni2Mo合金钢高温流变应力模型[J]. 塑性工程学报, 2017, 24(4):144-149,172.
Zhang L, Wang D C, Ma X B, et al. Flow stress model of alloy steel 30Cr2Ni2Mo at high temperature[J]. Journal of Plasticity Engineering, 2017, 24(4):144-149,172.
[13]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10):1883-1892.
[14]权国政, 温海荣, 梁建婷, 等. TB6钛合金热变形行为及加工图[J]. 材料热处理学报, 2015, 36(4):25-33.
Quan G Z, Wen H R, Liang J T, et al. Hot deformation behavior and processing maps of TB6 titanium alloy[J]. Transactions of Materials and Heat Treatment, 2015, 36(4):25-33.
[15]Narayana M S V S, Nageswara R B, Kashyap B P. Identification of flow instabilities in the processing maps of AISI 304 stainless steel[J]. Journal of Materials Processing Technology, 2005, 166(2): 268-278.
|