网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
1060铝板两道次渐进成形外缘翻边路径优化
英文标题:Optimization on outer edge flanging path for 1060 aluminum sheet in two-pass incremental forming
作者:刘金杰1 高锦张1 金志浩1 郑璐恺2 
单位:1.东南大学 材料科学与工程学院 江苏省先进金属材料高技术研究重点实验室  2.南京工程学院 机械工程学院 
关键词:渐进成形 外缘翻边 成形路径 翻边高度 壁厚分布 
分类号:TG379.6
出版年,卷(期):页码:2023,48(3):80-87
摘要:

 运用数值模拟与实体实验相结合的研究方法,设计并优化出一种两道次渐进成形外缘翻边路径,相较于单道次成形,该路径适用的加工范围更广。研究结果表明,使用圆弧直线两道次渐进成形外缘翻边路径,可以加工单道次无法成形的毛坯直径较大的翻边制件,提升制件的壁厚分布状态,在将第1道次的加工直径设置为dm+(D-dm)/4时制件的成形质量最好。根据有限元模拟实验,分析制件的壁厚分布曲线和平均壁厚值,拟合出扩孔两道次渐进成形圆孔翻边高度的表达式,并通过实体实验验证,实现了对两道次渐进成形外缘翻边高度的预测。

 A two-pass incremental forming outer edge flanging path was designed and optimized by using the research method combining numerical simulation and physical experiment, and compared with the single-pass forming, it was applicable to a wider processing range. The research results show that the use of the outer edge flanging path with circular arc and straight line in two-pass incremental forming  can process the flanging parts with larger blank diameters that cannot be formed in a single pass and improve the wall thickness distribution of workpiece, and the forming quality is the best when the processing diameter of the first pass is set to dm+(D-dm)/4. According to the finite element simulation experiment, the wall thickness distribution curve and the average wall thickness value of workpiece were analyzed, and the expression of the round hole flanging height for the two-pass incremental forming of reaming was fitted. Through the verification of physical experiments, the prediction of the outer edge flanging height in the two-pass incremental forming is realized.

基金项目:
先进数控技术江苏省高校重点建设实验室开放基金项目(KXJ05017)
作者简介:
作者简介:刘金杰(1996-),男,硕士研究生 E-mail:220181931@seu.edu.cn 通信作者:高锦张(1963-),男,硕士,副教授 E-mail:drd.0412@aliyun.com
参考文献:

 [1]高锦张. 板料数控渐进成形技术[M]. 北京: 机械工业出版社, 2011.


Gao J Z. NC Incremental Sheet Forming Technology [M]. Beijing:China Machine Press, 2011.

[2]卜小芬. 圆孔翻边渐进成形的模拟研究[D]. 南京:东南大学, 2017.

Pu X F. Simulation Study on Hole-flanging in Incremental Forming [D]. Nanjing: Southeast University,2017.

[3]蔡圣, 刘欣梅,陈军.薄板渐进成形数值仿真研究进展[J].塑性工程学报,2020,27(4):1-12.

Cai S, Liu X M, Chen J. Research progress on numerical simulation of incremental sheet forming[J]. Journal of Plasticity Engineering, 2020, 27(4):1-12.

[4]Mojtaba Esmailian, Khalil Khalili. Two-point incremental forming of metal-polymer three-layer sheets[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering,2021,45(1):181-196..

[5]Voswinckel H, Bambach M, Hirt G. Improving geometrical accuracy for flanging by incremental sheet metal forming[J]. International Journal of Material Forming, 2015, 8(3):391-399.

[6]Montanari L,Cristino  V A,Silva M B, et al. A new approach for deformation history of material elements in hole-flanging produced by single point incremental forming[J]. The International Journal of Advanced Manufacturing Technology,2013, 54(1): 56-63.

[7]杨大强, 陆彬,徐栋恺,等. 板料冲压模具扩孔和渐进成形扩孔的对比分析[J]. 上海交通大学学报, 2014, 48(3): 394-398, 411.

Yang D Q, Lu B, Xu D K, et al. Comparative study on conical hole flanging of sheet metal by conventional die and incremental forming process[J]. Journal of Shanghai Jiaotong University, 2014, 48(3): 394-398, 411.

[8]高锦张, 曹宇,贾俐俐.单道次圆孔翻边的数值模拟[J].塑性工程学报,2015,22(3):79-85,97.

Gao J Z, Cao Y, Jia L L. Numerical simulation for hole flanging by singlestage incremental forming [J]. Journal of Plasticity Engineering, 2015,22(3):79-85,97.

[9]曹宇. 数控渐进成形翻边技术研究[D]. 南京:东南大学, 2015.

Cao Y. Research on CNC Incremental Hole-flanging Technology[D]. Nanjing: Southeast University,2015.

[10]光凯惠, 姚运飞,吴田莉,等. 钢板电磁感应加热辅助渐进成形成形极限研究[J].塑性工程学报,2020,27(5):120-125.

Guang K H,Yao Y F,Wu T L,et al. Forming limit of steel plate electromagnetic induction heating assisted incremental forming[J]. Journal of Plasticity Engineering,2020,27 (5): 120-125.

[11]朱上, 李志辉,闫丽珍,等.预时效对汽车用新型Al-Mg-Si-Cu-Zn合金烘烤硬化性的影响[J].稀有金属,2022,46(3):281-288.

Zhu S, Li Z H, Yan L Z, et al. Bake-hardening response in a novel Al-Mg-Si-Cu-Zn alloy with pre-aging[J]. Chinese Journal of Rare Metals, 2022,46(3):281-288.

[12]刘文袆, 王耀奇,韩玉杰,等.二级时效对热冲压固溶7B04铝合金组织与性能的影响[J].稀有金属,2022,46(9):1146-1152.

Liu W Y, Wang Y Q, Han Y J,et al. Microstructure and properties of hot stamping solution state 7B04 aluminum alloy with two-step agingtreatment[J]. Chinese Journal of Rare Metals, 2022,46(9):1146-1152.

[13]Li Y L, William J. T. Daniel, Paul A. Meehan. Deformation analysis in single-point incremental forming through finite element simulation[J]. The International Journal of Advanced Manufacturing Technology,2017, 88(1-4):255-267.

[14]江仲海. 铝合金板料成形极限预测及数值模拟研究[D]. 长春:吉林大学, 2015.

Jiang Z H. Prediction of Aluminum Alloy Sheet Forming Limit and Numerical Simulation[D]. Changchun: Jinlin University,2015.

[15]蒋磊. 金属板料单点渐进成形轨迹优化及数值模拟[D]. 济南:山东大学, 2014.

Jiang L. Trajectory Optimization and Numerical Simulation on Metal Sheet Single Point Incremental Forming[D]. Jinan: Shandong University,2014.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9