网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于Autoform的后背门外板冲压开裂分析
英文标题:Stamping crack analysis on rear door outer panel based on Autoform
作者:魏绍东1 2 韩龙帅1 2 桑贺1 2 李晓林1 2 陈炜煊1 2 陈洪生3 
单位:1.首钢集团有限公司技术研究院 2.绿色可循环钢铁流程北京市重点试验室  3.首钢京唐钢铁联合有限责任公司 制造部 
关键词:冲压 后背门外板 圆角开裂 减薄率 拉延筋 
分类号:TG386.3+2
出版年,卷(期):页码:2023,48(3):99-104
摘要:

 基于冲压成形仿真软件Autoform对某车型后背门外板冲压过程进行模拟仿真,分析了压边力、润滑、料厚及模具间隙等因素对拉延筋圆角减薄率的影响,并基于分析结果解决了拉延筋圆角冲压开裂的问题。结果显示,零件减薄率随着压边力的增加而增加,但拉延筋圆角处减薄率随着压边力的增加而减小,压边力在1400~2000 kN之间时,拉延筋圆角处减薄率可保持在19.1%之内;拉延筋圆角处减薄率随着摩擦因数的减小而增加,当摩擦因数为0.11时减薄率达到19.6%;料厚由0.63 mm增加至0.67 mm时,拉延筋圆角处减薄率由16.0%减小至13.4%;模具间隙对拉延筋圆角开裂的影响最为显著,当模具间隙为0.02 mm时,减薄率达到25.5%。故适当提升压边力和摩擦因数、增加料厚、减小模具间隙均可降低拉延筋圆角处减薄率。

 Based on the stamping simulation software Autoform, the stamping process of rear door outer panel for a certain vehicle was simulated, and the influences of blank holder force, lubrication, material thickness and die clearance on the thinning rate of drawbead fillet were analyzed. Then, the problem of stamping crack for drawbead fillet was solved based on the analysis results. The results show that the thinning rate of part increases with the increasing of blank holder force, but the thinning rate at the drawbead fillet decreases with the increasing of blank holder force. When the blank holder force is between 1400 and 2000 kN, the thinning rate at the drawbead fillet can remain within 19.1%, and the thinning rate at the drawbead fillet increases with the decreasing of friction factor. When the friction factor is 0.11, the thinning rate reaches 19.6%, and when the material thickness increases from 0.63 mm to 0.67 mm, the thinning rate at the drawbead fillet decreases from 16.0% to 13.4%. The influence of die clearance on the drawbead fillet cracking is the most significant. When the die clearance is 0.02 mm, the thinning rate reaches 25.5%. Therefore, appropriately increasing the blank holder force, friction factor and material thickness and reducing the die clearance can all reduce the thinning rate of drawbead fillet.

基金项目:
作者简介:
作者简介:魏绍东(1994-),男,硕士,工程师 E-mail:weisd4991@163.com
参考文献:

 [1]刘清梅, 赵素兰, 王铭君, 等. 国际钢铁企业高强度冷轧汽车板研发实践[J]. 轧钢, 2014,31(6): 44-48.


Liu Q M, Zhao S L, Wang M J, et al. Research and development practice of high-strength cold-rolled automotive sheet in international steel enterprises [J]. Steel Rolling, 2014, 31 (6): 44-48.

[2]刘清梅, 封娇洁. 汽车轻量化条件下先进高强钢的发展及现状[J] .轧钢, 2020,37(4): 65-70, 90.

Liu Q M, Feng J J. Development and current situation of advanced high-strength steel under the condition of lightweight automobiles [J]. Rolling Steel, 2020,37(4): 65-70, 90.

[3]王存宇, 杨洁, 常颖, 等. 先进高强度汽车钢的发展趋势与挑战[J] .钢铁, 2019,54(2): 1-6.

Wang C Y, Yang J, Chang Y, et al. Development trends and challenges of advanced high-strength automotive steel [J]. Iron and Steel, 2019,54(2): 1-6.

[4]张新颖, 余天明, 栗彬琦, 等. 侧围外板冲压成形仿真及影响因素分析[J]. 汽车工艺与材料, 2021, 392(8):61-65.

Zhang X Y,Yu T M, Li B Q, et al. Simulation and analysis of influencing factors of stamping forming of side peripheral outer plate[J]. Automobile Technology & Material, 2021, 392(8): 61-65.

[5]许晶, 刘宁, 周亮. 基于Autoform软件对汽车后背门外板工艺分析及优化[J]. 锻压技术, 2021, 46(11): 137-142.Xu J, Liu N, Zhou L. Process analysis and optimization of automobile back door outer panel based on Autoform software [J]. Forging & Stamping Technology, 2021, 46(11):137-142.

[6]蒋磊, 王龙, 吕中原,等. 基于正交试验的汽车翼子板拉伸成形仿真研究[J]. 模具制造, 2021, 21(10): 1-6.

Jiang L, Wang L, Lyu Z Y, et al. Simulation study on tensile forming of automotive fenders based on orthogonal test[J]. Die & Mould Manufacture, 2021, 21(10): 1-6.

[7]孟超, 黄鹤辉, 尹辉俊. 基于 Autoform 的汽车顶盖外板有限元仿真及分析[J] .机械研究与应用, 2012,(6): 15-16, 19.

Meng C, Huang H H, Yin H J. Finite element simulation and analysis of automobile roof outer panel based on Autoform [J]. Mechanical Research & Application, 2012,(6): 15-16, 19.

[8]田永生, 邓国朝, 李梦瑶, 等. 基于Autoform-Sigma的汽车A柱内板冲压工艺参数优化[J]. 锻压技术, 2021,46(3): 101-104.

Tian Y S, Deng G C, Li M Y, et al. Optimization of stamping process parameters for automobile A-pillar inner plate based on Autoform-Sigma [J]. Forging & Stamping Technology, 2021,46(3): 101-104.

[9]王风强, 王汝站, 刘素丽, 等. 冷轧高强HC250IF钢冲压分层原因分析及改进措施[J]. 轧钢, 2021,38(6): 95-99.

Wang F Q, Wang R Z, Liu S L, et al. Cause analysis and improvement measures for stamping delamination of cold-rolled high-strength HC250IF steel[J]. Steel Rolling, 2021,38(6): 95-99.

[10]梅忠, 杨志刚, 赵定国, 等. 冲压用钢中大型夹杂物的研究[J]. 河北冶金, 2019,(7): 8-11.

Mei Z, Yang Z G, Zhao D G, et al. Research on large inclusions in stamping steel [J]. Hebei Metallurgy, 2019,(7): 8-11.

[11]徐国军, 胡华东, 田川, 等. Al2O3夹杂在DC06钢中的分布及对深冲性能的影响[J]. 中国冶金, 2021,31(5): 111-117.

Xu G J, Hu H D, Tian C, et al. Distribution of Al2O3 inclusions in DC06 steel and its influence on deep drawing properties [J]. China Metallurgy, 2021,31(5): 111-117.

[12]刘品. Q345EL热轧钢带冲压开裂的原因分析[J]. 山东冶金, 2020,42(1): 11-12.

Liu P. Analysis of the causes of stamping c3racking of Q345EL hot-rolled steel strip [J]. Shandong Metallurgy, 2020,42(1): 11-12.

[13]梁文, 刘培灿, 何龙义, 等. 深冲用SPHC钢开裂原因分析及改进措施[J]. 轧钢, 2020,37(2): 41-45.

Liang W, Liu P C, He L Y,et al. Analysis of cracking causes and improvement measures of SPHC steel for deep drawing [J]. Steel Rolling, 2020,37(2): 41-45.

[14]陈文琳,李志杰,王少阳.汽车前围板冲压数值模拟及工艺参数优化[J]. 精密成形工程, 2011, 3(3): 15-19.

Chen W L, Li Z J, Wang S Y. Numerical simulation and optimization of process parameters of automobile front sheet stamping[J]. Journal of Netshape Forming Engineering, 2011, 3(3): 15-19.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9