网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
小直径管件电磁成形的响应面优化
英文标题:Response surface optimization on electromagnetic forming for small diameter pipe fittings
作者:王哲峰1 郭嘉琪1 周夕然2 
单位:1.沈阳航空航天大学 航空宇航学院  2.沈阳工业大学 电气工程学院 
关键词:电磁成形 小直径管件 电磁力 加载电压 管件长度 管件材料 
分类号:TG391
出版年,卷(期):页码:2023,48(3):105-115
摘要:

 管件电磁成形过程中,由于电压过高导致管件破裂,或者电能转换成不必要的光能和热能等形式的能量从而导致变形量或成形不均匀的问题,使得电磁成形的成功率较低。为了提高小直径管件的成形质量与成形效率,通过响应面优化和中心复合实验设计方法对电磁成形工艺进行优化。采用中心复合实验方法,将加载电压、管件长度、管件材料作为因素,分别设置加载电压为5500、6500和7500 V,采用长度为18、45和65 cm,材料为3003铝合金、6063铝合金和2024铝合金的小直径管件,通过拟合回归方程并进行方差分析,最后得出材料为6063铝合金、管件长度为52 cm、加载电压为6000 V为最优解。

 During the electromagnetic forming process of pipe fittings,the success rate of electromagnetic forming is low due to the problems of excessive voltage causing the fracture of pipe fittings and the conversion of electrical energy into unnecessary energy in the forms of light and heat leading to the uneven deformation amount or forming. In order to improve the forming quality and forming efficiency of small diameter pipe fittings, the electromagnetic forming process was optimized by the response surface optimization and the central composite test design approach. Furthermore, using the central composite test approuch, taking loading voltage, length and material of pipe fittings as factors, setting the loading voltage of 5500, 6500 and 7500 V respectively, and using the small diameter pipe fittings with the length of 18, 45 and 65 cm respectively and the materials such as 3003, 6063 and 2024 aluminum alloys, by fitting the regression equation and variance analysis, the optimum solution was obtained as the material of 6063 aluminum alloy, the pipe fittings length of 52 cm and the loading voltage of 6000 V.

基金项目:
航空数字化制造过程国防基础科学重点实验室开放科研项目(SHSYS202008)
作者简介:
作者简介:王哲峰(1970-),男,博士,副教授 E-mail:zhefeng_w@126.com 通信作者:郭嘉琪(1997-),男,硕士研究生 E-mail:15432930@qq.com
参考文献:

 [1]陈超. 管件电磁缩径成形机理及工艺参数的研究[D]. 沈阳:沈阳航空航天大学, 2019.


Chen C. Research on the Forming Mechanism and the Process Parameters of Electromagnetic Tube Compression [D]. Shenyang:Shenyang Aerospace University,2019.

[2]Qiu L, Yu Y J, Wang Z W, et al. Analysis of electromagnetic force and deformation behavior in electromagnetic forming with different coil systems [J]. International Journal of Applied Electromagnetics and Mechanics,2018, 57(3):337-345.

[3]Xiong Q, Tang H T, Wang M X, et al. Design and implementation of tube bulging by an attractive electromagnetic[J]. Journal of Material Processing Technology,2019,273:116240.

[4]白雪山, 张鑫,张帅,等.航空5A02铝合金波纹管电磁成形的实验研究[J].锻压技术,2021,46(12):165-169.

Bai X S, Zhang X,Zhang S, et al. Experimental research on electromagnetic forming for aeronautic 5A02 aluminum alloy bellows[J]. Forging & Stamping Technology, 2021,46(12): 165-169.

[5]Qiu L, Li Y T, Yu Y J, et al. Numerical and experimental investigation in electromagnetic tube expansion with axial compression[J]. The International Journal of Advanced Manufacturing Technology,2019,104(5-8):3045-3051.

[6]Qiu L, Xiao Y, Deng C Z, et al. Electromagnetic-structural analysis and improved loose coupling method in electromagnetic forming process[J].The International Journal of Advanced Manufacturing Technology,2017,89(1):701-710. 

[7]张艳峰, 郎利辉,曾一畔,等. 变截面薄壁复杂铝合金管件充液成形压力参数对零件成形的影响[J]. 锻压技术,2021,46(4):89-95.

Zhang Y F,Lang L H,Zeng Y P,et al. Influence of pressure parameters for hydroforming on forming of complex thin-walled aluminum alloy pipe with variable section [J]. Forging & Stamping Technology,2021,46(4):89-95.

[8]金延野, 于海平.板材电磁成形技术研究进展[J].精密成形工程,2021,13(5):1-9.

Jin Y Y,Yu H P. Research development of electromagnetic forming (EMF) technology in sheet metal[J]. Journal of Netshape Forming Engineering,2021,13(5):1-9.

[9]严思梁. 基于建模的铝合金薄壁件电磁渐进成形机理研究[D].西安:西北工业大学,2017.

Yan S L. Modelling Based Study on Mechanism of Electromagnetic Incremental Forming of Thin-walled Aluminum Component[D].Xi′an: Northwestern Polytechnical University,2017.

[10]李春辉. 导体高频趋肤效应测试系统研究[D].南京:南京信息工程大学,2020.

Li C H. Research on High Frequency Skin Effect Test System for Conductors[D]. Nanjing: Nanjing University of Information Science & Technology,2020.

[11]雷银照. 轴对称线圈磁场计算[M].北京:中国计量出版社,1991.

Lei Y Z. Magnetic Field Calculation of Axisymmetric Coil[M].Beijing: China Metrology Press,1991.

[12]渠怀赓. 涡轮叶片弹塑性动力学及可靠性分析[D]. 哈尔滨: 哈尔滨工程大学,2020.

Qu H G. Elastoplastic Dynamics and Reliability Analysis of Turbine Blades[D]. Harbin: Harbin Engineering University,2020.

[13]王哲峰, 刘春宇,高铁军.基于集磁器的铝合金管件的电磁缩径研究[J].沈阳航空航天大学学报,2019.

Wang Z F, Liu C Y, Gao T J. Electromagnetic reduction study of aluminium alloy fittings based on magnet collectors[J]. Journal of Shenyang Aerospace University,2019.

[14]Box G E P, Wilson K B. On the experimental attainment of optimum condition[J]. Royal Statistical Society,1957,13:1-45.

[15]吴碧中, 魏淑艳.基于响应面法的桥梁仿真模型修正方法研究及应用[J].公路工程,2018,43(5):256-259,315. 

Wu B Z, Wei S Y.Research and application of bridge simulation model correction method based on response surface method[J].Highway Engineering,2018,43(5):256-259,315.

[16]王超峰. 基于响应面法的汽车发电机磁极锻造成形工艺多目标优化[D]. 郑州:华北水利水电大学,2017.

Wang C F. Multi-objective Optimization of Forging Process of Alternator Pole Using Response Surface Methodology[D]. Zhengzhou: North China University of Water Resources and Electric Power,2017.

[17]张江涛, 张聪,周新聪. 基于响应面法的吊舱推进器振动性能优化分析[A].第十八届船舶水下噪声学术讨论会[C]. 昆明, 2021.

Zhang J T, Zhang C, Zhou X C. Optimization analysis of vibration performance of pod propeller based on response surface method[A]. Proceedings of the 18th Symposium on Underwater Noise of Ships[C].Kunming, 2021.

 
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9