网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
某铝合金T型材双模孔反向挤压变形分析及模孔位置优化
英文标题:Deformation analysis and mold hole position optimization on double mold hole reverse extrusion for aluminum alloy T profile
作者:吕正风1 李烨旭2 孙有政1 曹善鹏1 马新武2 赵国群2 
单位:1.山东南山铝业股份有限公司 2.山东大学 材料液固结构与加工教育部重点实验室 
关键词:双模孔  反向挤压  T型材  模孔布局  劈料台 
分类号:TG375
出版年,卷(期):页码:2023,48(3):144-151
摘要:

 双模孔反向挤压过程中,模孔布局对挤压型材的变形及质量具有重要影响。对某铝合金T型材双模孔反向挤压过程进行了数值模拟,分析了不同模孔布局对挤压型材变形及其均匀性的影响规律,获得了平模挤压两模孔的合理布局方案。并针对平模挤压两模孔之间存在的等效应变集中问题,提出了一种在平模挤压两模孔之间设置劈料台的方法,对比分析了设置劈料台前后型材的等效应变、温度分布和流速分布等。结果表明,模孔布局对挤压型材的等效应变分布的影响明显,合理的模孔布局可有效提高型材的变形均匀性,具有劈料台的挤压模具能够显著改善型材的等效应变集中问题。

 During the process of reverse extrusion with double mold holes, the layout of mold hole has an important impact on the deformation and quality of extruded profiles. Therefore, the numerical simulation of reverse extrusion process with double mold holes for aluminum alloy T profile was carried out, and the influence laws of different mold hole layouts on the deformation and its uniformity of extruded profile were analyzed to obtain a reasonable layout plan for double mold holes in flat mold extrusion. Then, aiming at the problem of equivalent strain concentration between the double mold holes in the flat mold extrusion, a method of setting a cleaver divider between the double mold holes in the flat die extrusion was proposed, and the equivalent strain, temperature distribution and velocity distribution of profiles before and after setting the cleaver divider were compared and analyzed. The results show that the mold hole layout has a significant effect on the equivalent strain distribution of extruded profile. Thus, a reasonable mold hole layout can effectively improve the deformation uniformity of profile, and the extrusion mold with cleaver divider can significantly improve the problem of equivalent strain concentration of profile.

基金项目:
山东省重点研发计划(重大科技创新工程)(2021 ZLGX01)
作者简介:
作者简介:李烨旭(1998-),男,博士研究生 E-mail:202020483@mail.sdu.edu.cn 通信作者:赵国群(1962-),男,博士,教授 E-mail:zhaogq@sdu.edu.cn
参考文献:

 [1]刘莹莹, 李洁洁,杨健,等 孔挤压强化对2A97铝锂合金耳片疲劳性能的影响[J]. 稀有金属,2022,46(9):1254-1260.


Liu Y Y, Li J J, Yang J,et al. Hole expansion strengthening on fatigue properties of 2A97 Al-Li alloy lugs[J]. Chinese Journal of Rare Metals,2022,46(9):1254-1260.

[2]朱上, 李志辉,闫丽珍,等. 预时效对汽车用新型Al-Mg-Si-Cu-Zn合金烘烤硬化性的影响[J]. 稀有金属,2022,46(3):281-288.

Zhu S, Li Z H, Yan L Z, et al. Bake-hardening response in a novel Al-Mg-Si-Cu-Zn alloy with pre-aging[J]. Chinese Journal of Rare Metals,2022,46(3):281-288.

[3]Zhang C S, Wang C X, Zhang Q Y, et al. Influence of extrusion parameters on microstructure, texture, and second-phase particles in an Al-Mg-Si alloy[J]. Journal of Materials Processing Technology, 2019, 270: 323-334.

[4]吕洪伟, 杜连欢,谢洪博,等. 7075铝合金反挤压棒材生产工艺研究[J]. 铝加工, 2020, (2): 50-52.

Lyu H W, Du L H, Xie H B, et al. Study on production process of 7075 aluminum alloy reverse extrusion bar[J]. Aluminium Fabrication, 2020, (2): 50-52.

[5]Zhang C S, Zhao G Q, Chen H, et al. Investigation on effects of die orifice layout on three-hole porthole extrusion of aluminum alloy 6063 tubes[J]. Journal of Materials Engineering and Performance, 2013, 22(5): 1223-1232.

[6]Fang G, Zhou J, Duszczyk J. FEM simulation of aluminium extrusion through two-hole multi-step pocket dies[J]. Journal of Materials Processing Technology, 2009, 209(4): 1891-1900.

[7]Chen F K, Chuang W C, Torng S. Finite element analysis of multi-hole extrusion of aluminum-alloy tubes[J]. Journal of Materials Processing Technology, 2008, 201(1-3): 150-155.

[8]Das R, Sarmah A, Lakshmi D, et al. A finite element analysis on the effect of location of holes, die pockets and extrusion speed in multi-hole extrusion process[J]. Procedia Engineering, 2014, 97: 1247-1253.

[9]喻俊荃, 赵国群,张存生,等. 阻流块对薄壁空心铝型材挤压过程材料流速的影响[J]. 机械工程学报, 2012, 48(16): 52-58.

Yu J Q, Zhao G Q, Zhang C S, et al. Effect of baffle-block on material flow velocity during thin-walled hollow aluminum profile extrusion[J]. Journal of Mechanical Engineering, 2012, 48(16): 52-58.

[10]Choi B J, Moon I Y, Oh Y S, et al. Die design for extrusion process of titanium seamless tube using finite element analysis[J]. Metals, 2021, 11(9): 1338-1338.

[11]Liu P, Xie S S, Cheng L. Die structure optimization for a large, multi-cavity aluminum profile using numerical simulation and experiments[J]. Materials & Design, 2012, 36: 152-160.

[12]徐磊, 赵国群,张存生,等. 多腔壁板铝型材挤压过程数值模拟及模具优化[J]. 机械工程学报, 2011,47(22): 61-68.

Xu L, Zhao G Q, Zhang C S, et al. Numerical simulation of extrusion process and die optimization for aluminum multi-cavity profile[J]. Journal of Mechanical Engineering, 2011, 47(22): 61-68.

[13]Sinha M K, Deb S, Dixit U S. Design of a multi-hole extrusion process[J]. Materials & Design, 2009, 30(2): 330-334.

[14]殷剑, 黎诚,金康,等. 铝合金汽车前下摆臂成形工艺的有限元模拟与优化[J]. 锻压技术,2021,46(11):74-82.

Yin J,Li C,Jin K,et al. Finite element simulation and optimization on forming process of automobile front lower sway arm for aluminum alloy[J]. Forging & Stamping Technology,2021,46(11):74-82.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9