[1]禹兴胜, 武川, 石如星, 等. 55NiCrMoV7模具钢锻造过程微观组织演化实验与模拟仿真[J]. 塑性工程学报, 2021, 28(6): 174-184.
Yu X S, Wu C, Shi R X, et al. Microstructure evolution of 55NiCrMoV7 die steel during forging processing:Experiment and simulation[J]. Journal of Plasticity Engineering, 2021, 28(6): 174-184.
[2]Gan C L, Zhang K H, Qi W J, et al. Constitutive equations for high temperature flow stress prediction of 6063 Al alloy considering compensation of strain[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(11): 3486-3491.
[3]陈益哲, 庞玉华, 王建国, 等. GH2907合金热变形本构方程[J]. 稀有金属材料与工程, 2019, 48(11): 3577-3584.
Chen Y Z, Pang Y H, Wang J G, et al. Constitutive equation for hot deformation of GH2907 superalloy[J]. Rare Metal Materials and Engineering, 2019, 48(11): 3577-3584.
[4]张兵, 岳磊, 陈韩锋, 等. 铸态GH4169合金热变形行为及三种本构模型对比[J]. 稀有金属材料与工程, 2021, 50(1): 212-222.
Zhang B, Yue L, Chen H F, et al. Hot deformation behavior of as-cast GH4169 alloy and comparison of three constitutive models[J]. Rare Metal Materials and Engineering, 2021, 50(1): 212-222.
[5]王巧玲, 唐炳涛, 郑伟. 一种修正的Norton-Hoff本构模型及实验验证[J]. 中国机械工程, 2015, 26(14): 1978-1982.
Wang Q L, Tang B T, Zheng W. A modified Norton-Hoff constitutive model and experimental verification[J]. China Mechanical Engineering, 2015, 26(14): 1978-1982.
[6]李全, 金朝阳. 采用改进和优化的Zerilli-Armstrong本构模型预测AZ80镁合金的高温流动应力[J]. 中国有色金属学报, 2021, 31(8): 2091-2100.
Li Q, Jin C Y. Prediction of high temperature flow stress of AZ80 magnesium alloy by using modified and optimized Zerilli-Armstrong constitutive models[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(8): 2091-2100.
[7]彭付申, 陈鑫, 袁战伟, 等. W-20Cu复合材料热变形行为及应变补偿本构模型[J]. 兵器材料科学与工程, 2021, 44(6): 41-46.
Peng F S, Chen X, Yuan Z W, et al. Thermal deformation behavior and strain compensation constitutive model of W-20Cu composites[J]. Ordnance Material Science and Engineering, 2021, 44(6): 41-46.
[8]刘庆琦, 卢晔, 张翼飞, 等. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
Liu Q Q, Lu Y, Zhang Y F, et al. Thermal deformation behavior of Al19.3Co15Cr15Ni50.7 high entropy alloy [J]. Acta Metallurgica Sinica, 2021, 57 (10): 1299-1308.
[9]李红英, 赵菲, 刘丹, 等. 工程机械用Q1100钢的热变形应变补偿本构方程[J]. 中南大学学报: 自然科学版, 2020, 51(3): 608-618.
Li H Y, Zhao F, Liu D, et al. Thermal deformation strain compensation constitutive equation for Q1100 steel for construction machinery [J]. Journal of Central South University:Science and Technology, 2020, 51(3): 608-618.
[10]梅金娜, 薛飞, 吴天栋, 等. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(S1): 336-341.
Mei J N, Xue F, Wu T D, et al. Establishment of constitutive equation of FeCrNiMn high entropy alloy [J]. Materials Reports, 2021, 35(S1): 336-341.
[11]王雅静, 刘宗昌, 段宝玉. 34CrNi3MoV钢组织细化工艺的研究[J]. 兵器材料科学与工程, 2013, 36(1): 128-132.
Wang Y J, Liu Z C, Duan B Y. Microstructure of refined 34CrNi3MoV steel[J]. Ordnance Material Science and Engineering, 2013, 36(1): 128-132.
[12]赵勇桃, 刘宗昌, 王玉峰. 34CrNi3MoV钢的混晶及消除措施[J]. 金属热处理, 2007, 32(5): 75-77.
Zhao Y T, Liu Z C, Wang Y F. Mixed grain and elimination measure of 34CrNi3MoV steel [J]. Heat Treatment of Metals, 2007, 32(5): 75-77.
[13]陈曦, 亓耀国, 史晓楠, 等. IN718Plus高温合金的动态再结晶行为及模型研究[J]. 稀有金属, 2019, 43(12): 1260-1268.
Chen X, Qi Y G, Shi X N, et al. Behaviors and model of dynamic recrystallization of nickel-based superalloy IN718Plus [J]. Chinese Journal of Rare Metals, 2019, 43(12): 1260-1268.
[14]Sellars C M, Mctegart W J. On the mechanism of hot deformation [J]. Acta Metallurgica, 1996, 14(9): 11-36.
|