网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
34CrNi3MoV钢的热变形行为
英文标题:Thermal deformation behavior on 34CrNi3MoV steel
作者:邹志鹏1 徐东1  2 郑冰1  3 王怡群2 王学玺2 郑磊4  5 
单位:1. 河北工程大学 河北省高品质冷镦钢技术创新中心  2. 河南中原特钢装备制造有限公司 3. 辽宁科技大学 材料与冶金学院  4. 河北普阳钢铁有限公司 河北省高韧性风塔钢工程研究中心  5. 河北普阳钢铁有限公司 河北省高塑韧性耐磨钢板技术创新中心 
关键词:34CrNi3MoV钢 等温压缩 流变应力 本构方程 应变补偿 
分类号:TG142.1
出版年,卷(期):页码:2023,48(3):211-218
摘要:

 为分析34CrNi3MoV钢的热变形行为,采用Gleeble-1500热模拟试验机进行等温热压缩试验,设置变形温度为800~1200 ℃、应变速率为0.01~10 s-1,获得相应的流变应力曲线。分析了流变应力对变形参数的敏感性,计算了不同应变量下材料参数α、n、Q和A的值,并利用五阶多项式拟合了各材料参数与应变量的对应关系。采用应变补偿的Arrhenius模型对34CrNi3MoV钢的高温流动应力本构方程进行回归。结果表明:34CrNi3MoV钢在变形温度为1000 ~ 1200 ℃、应变速率为0.01 ~ 1 s-1 时出现较为明显的动态再结晶曲线特征,并随着应变速率的降低和变形温度的升高,峰值应力越明显。本构方程预测的流动应力与试验结果的吻合度较好,在整个试验范围内的平均相对误差Rav仅为5.52%,表明所构建的模型是可靠的。

 In order to analyze the thermal deformation behavior of 34CrNi3MoV steel, the isothermal thermal compression tests were conducted on Gleeble-1500 thermo-mechanical simulator with the deformation temperature of 800-1200 ℃ and the strain rate of 0.01-10 s-1, the corresponding rheological stress curves were obtained. Then, the sensitivity of rheological stress to deformation parameters was analyzed, and the values of material parameters α, n, Q and A under different strain amounts were calculated. Furthermore, the corresponding relationship between each material parameter and strain amount was fitted by the fifth-order polynomial, and the high-temperature rheological stress constitutive equation of 34CrNi3MoV steel was regressed by the strain-compensated Arrhenius model. The results show that the dynamic recrystallization curve characteristics of 34CrNi3MoV steel is obvious when the temperature is 1000-1200 ℃ and the strain rate is 0.01-1 s-1, and the peak stress becomes more obvious with the decreasing of strain rate and the increasing of deformation temperature. The rheological stress predicted by the constitutive equation has a high agreement with the test results, and the average relative error Rav in the entire test range is only 5.52%, which indicates that the constructed model is reliable. 

基金项目:
国家自然科学基金联合基金资助项目 (NSFC)(U20A20272);河北省军民科技协同创新专项(22351001D);邯郸市科学研究计划重点项目(21122015004);河北省高等学校科学技术研究项目(CXY2023004)
作者简介:
作者简介:邹志鹏 (1987-),男,硕士研究生 E-mail: zzp9963@163.com 通信作者:徐东 (1984-),男,博士,教授,博士生导师 E-mail:xudong_xyz@163.com34CrNi3MoV
参考文献:

 [1]禹兴胜, 武川, 石如星, 等. 55NiCrMoV7模具钢锻造过程微观组织演化实验与模拟仿真[J]. 塑性工程学报, 2021, 28(6): 174-184.


Yu X S, Wu C, Shi R X, et al. Microstructure evolution of 55NiCrMoV7 die steel during forging processing:Experiment and simulation[J]. Journal of Plasticity Engineering, 2021, 28(6): 174-184.

[2]Gan C L, Zhang K H, Qi W J, et al. Constitutive equations for high temperature flow stress prediction of 6063 Al alloy considering compensation of strain[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(11): 3486-3491.

[3]陈益哲, 庞玉华, 王建国, 等. GH2907合金热变形本构方程[J]. 稀有金属材料与工程, 2019, 48(11): 3577-3584.

Chen Y Z, Pang Y H, Wang J G, et al. Constitutive equation for hot deformation of GH2907 superalloy[J]. Rare Metal Materials and Engineering, 2019, 48(11): 3577-3584.

[4]张兵, 岳磊, 陈韩锋, 等. 铸态GH4169合金热变形行为及三种本构模型对比[J]. 稀有金属材料与工程, 2021, 50(1): 212-222.

Zhang B, Yue L, Chen H F, et al. Hot deformation behavior of as-cast GH4169 alloy and comparison of three constitutive models[J]. Rare Metal Materials and Engineering, 2021, 50(1): 212-222.

[5]王巧玲, 唐炳涛, 郑伟. 一种修正的Norton-Hoff本构模型及实验验证[J]. 中国机械工程, 2015, 26(14): 1978-1982.

Wang Q L, Tang B T, Zheng W. A modified Norton-Hoff constitutive model and experimental verification[J]. China Mechanical Engineering, 2015, 26(14): 1978-1982.

[6]李全, 金朝阳. 采用改进和优化的Zerilli-Armstrong本构模型预测AZ80镁合金的高温流动应力[J]. 中国有色金属学报, 2021, 31(8): 2091-2100.

Li Q, Jin C Y. Prediction of high temperature flow stress of AZ80 magnesium alloy by using modified and optimized Zerilli-Armstrong constitutive models[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(8): 2091-2100.

[7]彭付申, 陈鑫, 袁战伟, 等. W-20Cu复合材料热变形行为及应变补偿本构模型[J]. 兵器材料科学与工程, 2021, 44(6): 41-46.

Peng F S, Chen X, Yuan Z W, et al. Thermal deformation behavior and strain compensation constitutive model of W-20Cu composites[J]. Ordnance Material Science and Engineering, 2021, 44(6): 41-46.

[8]刘庆琦, 卢晔, 张翼飞, 等. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.

Liu Q Q, Lu Y, Zhang Y F, et al. Thermal deformation behavior of Al19.3Co15Cr15Ni50.7 high entropy alloy [J]. Acta Metallurgica Sinica, 2021, 57 (10): 1299-1308.

[9]李红英, 赵菲, 刘丹, 等. 工程机械用Q1100钢的热变形应变补偿本构方程[J]. 中南大学学报: 自然科学版, 2020, 51(3): 608-618.

Li H Y, Zhao F, Liu D, et al. Thermal deformation strain compensation constitutive equation for Q1100 steel for construction machinery [J]. Journal of Central South University:Science and Technology, 2020, 51(3): 608-618.

[10]梅金娜, 薛飞, 吴天栋, 等. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(S1): 336-341.

Mei J N, Xue F, Wu T D, et al. Establishment of constitutive equation of FeCrNiMn high entropy alloy [J]. Materials Reports, 2021, 35(S1): 336-341.

[11]王雅静, 刘宗昌, 段宝玉. 34CrNi3MoV钢组织细化工艺的研究[J]. 兵器材料科学与工程, 2013, 36(1): 128-132.

Wang Y J, Liu Z C, Duan B Y. Microstructure of refined 34CrNi3MoV steel[J]. Ordnance Material Science and Engineering, 2013, 36(1): 128-132.

[12]赵勇桃, 刘宗昌, 王玉峰. 34CrNi3MoV钢的混晶及消除措施[J]. 金属热处理, 2007, 32(5): 75-77.

Zhao Y T, Liu Z C, Wang Y F. Mixed grain and elimination measure of 34CrNi3MoV steel [J]. Heat Treatment of Metals, 2007, 32(5): 75-77.

[13]陈曦, 亓耀国, 史晓楠, 等. IN718Plus高温合金的动态再结晶行为及模型研究[J]. 稀有金属, 2019, 43(12): 1260-1268.

Chen X, Qi Y G, Shi X N, et al. Behaviors and model of dynamic recrystallization of nickel-based superalloy IN718Plus [J]. Chinese Journal of Rare Metals, 2019, 43(12): 1260-1268.

[14]Sellars C M, Mctegart W J. On the mechanism of hot deformation [J]. Acta Metallurgica, 1996, 14(9): 11-36.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9