[1]胡正飞, 吴杏芳,王春旭. 二次硬化高CoNi超高强度合金钢的研究近况[J].钢铁研究学报,2001,13(4): 62-68.
Hu Z F,Wu X F,Wang C X. Recent status of enriched CoNi ultra-high strength steel with secondary hardening[J]. Journal of Iron and Steel Research, 2001,13(4): 62-68.
[2]Gao Y H, Liu S Z, Hu X B, et al. A novel low cost 2000 MPa grade ultra-high strength steel with balanced strength and toughness[J]. Materials Science & Engineering A,2019,759:298-302.
[3]厉勇, 王春旭,黄顺喆,等.超高强度钢中M2C和β-NiAl相的复合析出强化行为[J].金属热处理,2018,43(6):50-54.
Li Y,Wang C X,Huang S Z,et al.Combined precipitation strengthening behavior of M2C carbides and β-NiAl intermetallics in ultrahigh strength steel[J]. Heat Treatment of Metals, 2018,43(6):50-54.
[4]Perrut M, Mathon M H, Delagnes D. Small-angle neutron scattering of multiphase secondary hardening steels[J]. Journal of Materials Science, 2012,47(4):1920-1929.
[5]梁锋. 夹杂物对超高强度钢微观破坏机制的研究[D].北京:清华大学,2006.
Liang F. Investigation of Inclusions on Micro Fracture Mechanisms of High Strengthened Steels[D].Beijing: Tsinghua University,2006.
[6]刘路, 詹肇麟,韩顺,等.回火温度对GE1014钢组织与力学性能的影响[J].金属热处理,2018,43(10):133-137.
Liu L,Zhan Z L,Han S,et al. Effect of tempering temperature on microstructure and mechanical properties of GE1014 steel[J]. Heat Treatment of Metals, 2018,43(10):133-137.
[7]Delagnes D,Pettinari-Sturmel F,Mathon M H,et al. Cementite-free martensitic steels: A new route to develop high strength / high toughness grades by modifying the conventional precipitation sequence during tempering[J].Acta Materialia, 2012,60(16): 5877-5888.
[8]刘跃, 韩顺,厉勇,等. 淬火温度对GE1014超高强度钢组织及性能的影响[J].金属热处理,2022,47(2):125-130.
Liu Y,Han S,Li Y,et al. Effect of quenching temperature on microstructure and mechanical properties of GE1014 ultra-high strength steel[J]. Heat Treatment of Metals,2022,47(2):125-130.
[9]厉勇, 王春旭,黄顺喆,等. 复合析出强化超高强度钢20Co14Ni12Cr2MoAl的动态再结晶行为[J]. 金属热处理,2018,43(7):10-11.
Li Y,Wang C X,Huang S Z,et al. Dynamic recrystallization behavior of combined precipitation strengthening 20Co14Ni12Cr2MoAl ultrahigh strength steel[J].Heat Treatment of Metals, 2018,43(7):10-11.
[10]Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming[J]. Journal of Materials Processing Technology, 2004,152(2):136-143.
[11]尚丽梅, 王春旭,韩 顺,等. 基于摩擦-温度双修正的Maraging250钢热变形行为及热加工图[J]. 金属热处理,2021,46(5):111-117.
Shang L M,Wang C X,Han S,et al. Hot deformation behavior and processing maps of Maraging250 steel based on friction and temperature double correction [J].Heat Treatment of Metals, 2021,46(5):111-117.
[12]Zhu F H, Xiong W, Li X F,et al. A new flow stress model based on Arrhenius equation to track hardening and softening behaviors of Ti6Al4V alloy [J].Rare Metals,2018,37(12):1035-1045.
[13]Hamed Mirzadeh, Jose Maria Cabrera, Abbas Najafizadeh. Constitutive relationships for hot deformation of austenite [J]. Acta Materialia,2011, 59(16): 6441-6448.
[14]Robi P S, Dixit U S. Application of neural networks in generating processing map for hot working [J]. Journal of Materials Processing Technology,2003, 142(1): 289-294.
[15]Zener C,Hollomom J H. Effect of strain rate upon the plastic flow of stress[J]. Journal Applied Physics, 1944, 15(1): 22-32.
[16]Ziegler H. Progress in Solid Mechanics [M]. New Jersey:Wiley Press, 1963.
[17]Prasad Y V R K. Processing maps: A status [J].Journal of Materials Engineering and Performance, 2003,12(6):638-645.
[18]刘爽, 徐长征,丰涵,等. 铸态C-276镍基高温合金的热变形行为及加工图[J]. 热加工工艺,2017,46(23): 105-110.
Liu S, Xu C Z, Feng H, et al. Hot deformation behavior and processing map of as-cast nickel-based C-276 Superalloy[J]. Hot Working Technology, 2017,46(23): 105-110.
[19]李莎, 曾莉,苗华军,等. 镍基高温合金GH4700的热变形行为及热加工图[J]. 材料热处理学报, 2013, 34(9): 51-56.
Li S, Zeng L, Miao H J, et al. Hot deformation behavior and processing maps of Ni-based superalloy GH4700 [J]. Transactions of Materials and Heat Treatment, 2013, 34(9): 51-56.
[20]李莎, 苗华军,金宪哲,等. 新型镍基高温合金GH4700热变形行为及组织演变研究[J]. 铸造技术, 2013,34(8): 953-957.
Li S, Miao J H, Jin X Z, et al. Research on hot deformation behavior and microstructure evolution of new nickel-based superalloy GH4700[J]. Foundry Technology, 2013,34(8): 953-957.
[21]赵宏禹, 刘荣佩,王长军,等. 9Ni马氏体不锈钢的热变形行为及其能量耗散图[J] . 钢铁,2018,53(9):74-79.
Zhao H Y,Liu R P,Wang C J,et al. Hot deformation behavior and energy dissipation diagram of 9Ni martensite stainless steel[J]. Iron and Steel,2018,53(9):74-79.
[22]Zhou X, Wang K L, Lu S Q, et al. Flow behavior and 3D processing map for hot deformation of Ti-2.7Cu alloy[J]. Journal of Materials Research and Technology,2020,9(3):2652-2661.
[23]Neethu N,Chakravarthy P. Development of processing maps for hot deformation: Algorithm and common errors[J]. Metallurgical and Materials Transactions,2020,51(7):3398-3402.
[24]Deng K, Sun D X, Tang W X, et al. 3D processing map and hot deformation behaviour of a new type Al-Zn-Mg alloy[J]. Philosophical Magazine,2020,100(13):1716-1732.
|