网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于摩擦修正的GE1014钢热本构方程及热加工图
英文标题:Thermal constitutive equation and thermal processing map on GE1014 steel based on friction correction
作者:廉学魁 韩顺 刘跃 厉勇 王春旭 王毛球 
单位:钢铁研究总院有限公司 
关键词:GE1014钢 高温流变曲线修正 动态再结晶 本构方程 热加工图 
分类号:TG142.1
出版年,卷(期):页码:2023,48(3):219-226
摘要:

 对GE1014钢进行了热变形温度为850~1200 ℃、应变速率为0.01~10 s-1、应变量为0.7条件下的高温轴向压缩试验,对流变曲线进行了摩擦修正,建立了GE1014钢的热本构方程和Z参数方程,基于动态材料模型理论建立了GE1014钢的热加工图,并通过材料变形后的显微组织分析确定了热加工图的准确性和最后热变形区域。结果表明,摩擦效应在低变形温度或高应变速率条件下对GE1014钢的高温流变曲线影响显著;计算得到摩擦修正后的GE1014钢的热变形激活能为400.197 kJ·mol-1;当试验钢的真应变为0.4和0.7时,在试验条件下的高温、低应变速率区的能量耗散效率η达到最大值0.34。综合分析热加工图及试验钢的显微组织,确定了GE1014钢在变形温度为1100~1150 ℃、应变速率为0.1 s-1条件下能够获得均匀、细小的完全动态再结晶组织,此时GE1014钢的热加工性能最好。

 The high temperature axial compression test was conducted on GE1014 steel under the conditions of the thermal deformation temperature of 850-1250 , the strain rate of 0.01-10 s-1 and the deformation amount of 0.7, and the rheological curves were modified by friction correction. Then, the thermal constitutive equation and Z parameter formula of GE1014 steel were established, and the thermal processing map of GE1014 steel was established based on the theory of dynamic material model. Finally, the accuracy of thermal processing map and the optimum thermal deformation zone were confirmed by analyzing the microstructure of the material after deformation. The results show that friction effect significantly affects the high temperature rheological curve of GE1014 steel at low deformation temperature or high strain rate, and the thermal deformation activation energy of GE1014 steel after fiction correction is calculated as 400.197 kJ·mol-1. When the true strain of the test steel is 0.4 and 0.7 respectively, the maximum energy dissipation efficiency η under the high temperature and low strain rate reaches the maximum of 0.34. Comprehensively analyzing the thermal processing map and the microstructure of the test steel, it is determined that the GE1014 steel under the deformation temperature of 1100-1150 and the strain rate of 0.1 s-1 can obtain the uniform and fine fully dynamically recrystallized structure, and the thermal workability of GE1014 steel is the best at this time.

基金项目:
作者简介:
作者简介:廉学魁(1984-),男,博士研究生 E-mail:lxk-84@163.com 通信作者:韩顺(1987-),男,博士,高级工程师 E-mail:hanshunfa@126.com
参考文献:

 [1]胡正飞, 吴杏芳,王春旭. 二次硬化高CoNi超高强度合金钢的研究近况[J].钢铁研究学报,2001,13(4): 62-68.


Hu Z F,Wu X F,Wang C X. Recent status of enriched CoNi ultra-high strength steel with secondary hardening[J]. Journal of Iron and Steel Research, 2001,13(4): 62-68.

[2]Gao Y H, Liu S Z, Hu X B, et al. A novel low cost 2000 MPa grade ultra-high strength steel with balanced strength and toughness[J]. Materials Science & Engineering A,2019,759:298-302.

[3]厉勇, 王春旭,黄顺喆,等.超高强度钢中M2C和β-NiAl相的复合析出强化行为[J].金属热处理,2018,43(6):50-54.

Li Y,Wang C X,Huang S Z,et al.Combined precipitation strengthening behavior of M2C carbides and β-NiAl intermetallics in ultrahigh strength steel[J]. Heat Treatment of Metals, 2018,43(6):50-54.

[4]Perrut M, Mathon M H, Delagnes D. Small-angle neutron scattering of multiphase secondary hardening steels[J]. Journal of Materials Science, 2012,47(4):1920-1929.

[5]梁锋. 夹杂物对超高强度钢微观破坏机制的研究[D].北京:清华大学,2006.

Liang F. Investigation of Inclusions on Micro Fracture Mechanisms of High Strengthened Steels[D].Beijing: Tsinghua University,2006.

[6]刘路, 詹肇麟,韩顺,等.回火温度对GE1014钢组织与力学性能的影响[J].金属热处理,2018,43(10):133-137.

Liu L,Zhan Z L,Han S,et al. Effect of tempering temperature on microstructure and mechanical properties of GE1014 steel[J]. Heat Treatment of Metals, 2018,43(10):133-137.

[7]Delagnes D,Pettinari-Sturmel F,Mathon M H,et al. Cementite-free martensitic steels: A new route to develop high strength / high toughness grades by modifying the conventional precipitation sequence during tempering[J].Acta Materialia, 2012,60(16): 5877-5888.

[8]刘跃, 韩顺,厉勇,等. 淬火温度对GE1014超高强度钢组织及性能的影响[J].金属热处理,2022,47(2):125-130.

Liu Y,Han S,Li Y,et al. Effect of quenching temperature on microstructure and mechanical properties of GE1014 ultra-high strength steel[J]. Heat Treatment of Metals,2022,47(2):125-130.

[9]厉勇, 王春旭,黄顺喆,等. 复合析出强化超高强度钢20Co14Ni12Cr2MoAl的动态再结晶行为[J]. 金属热处理,2018,43(7):10-11.

Li Y,Wang C X,Huang S Z,et al. Dynamic recrystallization behavior of combined precipitation strengthening 20Co14Ni12Cr2MoAl ultrahigh strength steel[J].Heat Treatment of Metals, 2018,43(7):10-11.

[10]Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming[J]. Journal of Materials Processing Technology, 2004,152(2):136-143.

[11]尚丽梅, 王春旭,韩 顺,等. 基于摩擦-温度双修正的Maraging250钢热变形行为及热加工图[J]. 金属热处理,2021,46(5):111-117.

Shang L M,Wang C X,Han S,et al. Hot deformation behavior and processing maps of Maraging250 steel based on friction and temperature double correction [J].Heat Treatment of Metals, 2021,46(5):111-117.

[12]Zhu F H, Xiong W, Li X F,et al. A new flow stress model based on Arrhenius equation to track hardening and softening behaviors of Ti6Al4V alloy [J].Rare Metals,2018,37(12):1035-1045.

[13]Hamed Mirzadeh, Jose Maria Cabrera, Abbas Najafizadeh. Constitutive relationships for hot deformation of austenite [J]. Acta Materialia,2011, 59(16): 6441-6448.

[14]Robi P S, Dixit U S. Application of neural networks in generating processing map for hot working [J]. Journal of Materials Processing Technology,2003, 142(1): 289-294.

[15]Zener C,Hollomom J H. Effect of strain rate upon the plastic flow of stress[J]. Journal Applied Physics, 1944, 15(1): 22-32.

[16]Ziegler H. Progress in Solid Mechanics [M]. New Jersey:Wiley Press, 1963.

[17]Prasad Y V R K. Processing maps: A status [J].Journal of Materials Engineering and Performance, 2003,12(6):638-645.

[18]刘爽, 徐长征,丰涵,等. 铸态C-276镍基高温合金的热变形行为及加工图[J]. 热加工工艺,2017,46(23): 105-110.

Liu S, Xu C Z, Feng H, et al. Hot deformation behavior and processing map of as-cast nickel-based C-276 Superalloy[J]. Hot Working Technology, 2017,46(23): 105-110.

[19]李莎, 曾莉,苗华军,等. 镍基高温合金GH4700的热变形行为及热加工图[J]. 材料热处理学报, 2013, 34(9): 51-56.

Li S, Zeng L, Miao H J, et al. Hot deformation behavior and processing maps of Ni-based superalloy GH4700 [J]. Transactions of Materials and Heat Treatment, 2013, 34(9): 51-56.

[20]李莎, 苗华军,金宪哲,等. 新型镍基高温合金GH4700热变形行为及组织演变研究[J]. 铸造技术, 2013,34(8): 953-957.

Li S, Miao J H, Jin X Z, et al. Research on hot deformation behavior and microstructure evolution of new nickel-based superalloy GH4700[J]. Foundry Technology, 2013,34(8): 953-957.

[21]赵宏禹, 刘荣佩,王长军,等. 9Ni马氏体不锈钢的热变形行为及其能量耗散图[J] . 钢铁,2018,53(9):74-79. 

Zhao H Y,Liu R P,Wang C J,et al. Hot deformation behavior and energy dissipation diagram of 9Ni martensite stainless steel[J]. Iron and Steel,2018,53(9):74-79.

[22]Zhou X, Wang K L, Lu S Q, et al. Flow behavior and 3D processing map for hot deformation of Ti-2.7Cu alloy[J]. Journal of Materials Research and Technology,2020,9(3):2652-2661.

[23]Neethu N,Chakravarthy P. Development of processing maps for hot deformation: Algorithm and common errors[J]. Metallurgical and Materials Transactions,2020,51(7):3398-3402.

[24]Deng K, Sun D X, Tang W X, et al. 3D processing map and hot deformation behaviour of a new type Al-Zn-Mg alloy[J]. Philosophical Magazine,2020,100(13):1716-1732.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9