[1]陈益哲, 庞玉华,王建国,等. GH2907高温合金热加工工艺窗口的建立与验证[J]. 锻压技术,2022,47(8):224-234.
Chen Y Z,Pang Y H,Wang J G,et al. Establishment and verification on hot working process window for superalloy GH2907 [J]. Forging & Stamping Technology,2022,47(8):224-234.
[2]方军, 吴敏,张涛,等. GH4169高温合金螺栓热锻成形工艺[J]. 锻压技术,2022,47(3):8-22.
Fang J,Wu M,Zhang T,et al. Hot forging process on superalloy GH4169 bolt[J]. Forging & Stamping Technology,2022,47(3):8-22.
[3]金宏, 殷银银,刘乐,等. 航天用超大规格GH4169高温合金螺栓热镦工艺[J]. 锻压技术,2022,47(6):55-60.
Jin H,Yin Y Y,Liu L,et al. Hot upsetting process of super-sized superalloy GH4169 bolts for aerospace[J]. Forging & Stamping Technology,2022,47(6):55-60.
[4]肖刚锋, 张义龙,夏琴香,等. 镍基高温合金锥筒形件拉深旋压时成形质量及组织性能研究[J]. 锻压技术,2021,46(9):190-196.
Xiao G F,Zhang Y L,Xia Q X,et al. Research on forming quality,microstructure and properties for Ni-based superalloy conical-cylindrical parts during deep-drawing spinning [J]. Forging & Stamping Technology,2021,46(9):190-196.
[5]王岩, 谷宇,王珏,等. 铸态镍基高温合金GH4698热变形行为[J]. 锻压技术,2021,46(11):250-254.
Wang Y,Gu Y,Wang J,et al. Hot deformation behavior of as-cast Ni-based superalloy GH4698[J]. Forging & Stamping Technology,2021,46(11):250-254.
[6]Powell A, Bond B,O′Brien C, et al. Development of a new cast and wrought alloy (Rene 65) for high temperature disk applications[A]. Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives[C]. USA,2014.
[7]O′Brien C, Heaney J, Russell J, et al. Rene65 billet material for forged turbine components[A]. Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives[C]. USA, 2014.
[8]Wojcik T, Rath M, Kozeschnik E. Charaterisation of secondary phases in Ni-based superalloy Rene 65[J]. Materials Science and Technology, 2018, 34: 1-7.
[9]赵光普, 黄烁,张北江,等. 新一代镍基变形高温合金GH40654A的组织控制与力学性[J]. 钢铁研究学报,2015,27(2):40-47.
Zhao G P, Huang S, Zhang B J, et al. Microstructure control and mechanical properties of the newest nickel-based wrought superalloy GH4065A [J]. Journal of Iron and Steel Research, 2015, 27(2):40-47.
[10]杜金辉, 赵光普,邓群,等. 中国变形高温合金研制进展[J].航空材料学报,2016, 36(3): 27-39.
Du J H, Zhao G P, Deng Q, et al. Develop of wrought superalloy in China[J]. Journal of Aeronautical Materials, 2016, 36(3): 27-39.
[11]刘巧沐, 黄顺洲,刘佳,等. 高温材料研究进展及其在航空发动机上的应用[J].燃气涡轮试验与研究,2014, 27(4): 51-56.
Liu Q M, Huang S Z, Liu J, et al. Progress and application of high temperature structural materials on aero-engine[J]. Gas Turbine Experiment and Research, 2014, 27(4): 51-56.
[12]张北江, 赵光普,张文云,等. 高性能涡轮盘材料GH4065及其先进制备技术研究[J].金属学报,2015, 51(10): 1227-1234.
Zhang B J, Zhao G P, Zhang W Y, et al. Investigation of high performance disc alloy GH4065 and associated advanced processing technologies[J]. Acta Metallurgica Sinica, 2015, 51(10): 1227-1234.
[13]张北江, 黄烁,张文云,等. 变形高温合金盘材及其制备技术研究进展[J],金属学报,2019, 55(9): 1095-1114.
Zhang B J, Huang S, Zhang W Y, et al. Recent development of nickel-based disc alloys and corresponding cast-wrought processing techniques[J]. Acta Metallurgica Sinica, 2019, 55(9): 1095-1114.
[14]Laurence A, Cormier J, Villechaise P, et al. Impact of the solution cooling rate and of thermal aging on the creep properties of the new cast & wrought René 65 Ni-based superalloy[A]. Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives[C]. TMS, Pittsburgh: 2014.
[15]Olufayo O A, Che H, Songmene V, et al. Machinability of Rene 65 superalloy[J]. Materials, 2019, 12: 2034.
[16]Gourdin S, Cormier J, Henaff G, et al. Assessment of specific contribution of residual stress generated near surface anomalies in the high temperature fatigue life of a René 65 superalloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40: 69-80.
[17]Charpagne M A, Vennegues P, Billot T, et al. Evidence of multimicrometric coherent γ′ precipitates in a hot-forged γ-γ′ nickel-based superalloy[J]. Journal of Microscopy, 2016, 263:106-112.
[18]Minisandram R S, Jackman L A, Russell J L, et al. Recrystallization response during thermo-mechanical processing of alloy René 65 billet[A]. Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives[C]. TMS, Pittsburgh: 2014.
[19]Zhang B J, Zhao G P, Zhang W Y, et al. Deformation mechanisms and microstructural evolution of γ+γ′ aggregates generated during thermomechanical processing of nickel-base superalloys[A]. Proceedings of the 13th International Symposium on Superalloys[C].USA,2016.
[20]董建新. 镍基合金管材挤压及组织控制[M].北京:冶金工业出版社,2014.
Dong J X. Extrusion and Microstructure Control of Nickel Based Alloy Pipe [M]. Beijing: Metallurgical Industry Press, 2014.
[21]Koul A K, Immarigeon J-P A. Modelling of plastic flow in coarse grained nickel-base superalloy compacts under isothermal forging conditions[J]. Acta Metallurgica, 1987, 35:1791-1805.
[22]Kaibyshev O A, Utyashev F Z, Valitov V A. Effect of γ′-phase content on preparation schedule for structure and superplasticity of high-temperature nickel alloys[J]. Metal Science and Heat Treatment,1989, 31(7):526-532.
[23]Valitov V A, Salishchev G, Mukhtarov S. Superplasticity of nickel-based alloys with sub-microcrystalline structure[A].Materials Science Forum[C]. Trans.Tech.Publications, Switzerland: 1997.
[24]Valitov V A,Utyashev F Z, Mukhtarov S. Formation of microcrystalline structures and superplastic properties of nickel based alloys[A]. Materials Science Forum[C]. Trans.Tech.Publications, Switzerland: 1999.
[25]Wen J T, Pollock T M. Deformation and strain storage mechanisms during high-temperature compression of a powder metallurgy nickel-base superalloy[J]. Metallurgical and Materials Transactions A, 2010, 41A(8): 2002-2009.
[26]Robson J D. Modeling competitive continuous and discontinuous precipitation[J]. Acta Materialia, 2013, 61:7781-7790.
[27]Bozzolo N, Soua N, Logé R E. Evolution of microstructure and twin density during thermomechanical processing in a γ-γ′ nickel-based superalloy[J]. Acta Materialia, 2012, 60: 5056-5066.
|