网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
GH4065A镍基高温合金多道次压缩变形组织演变规律
英文标题:Microstructure evolution laws of multi-pass compression deformation for nickel-base superalloy GH4065A
作者:税烺1 2 付建辉1 2 赖宇1 2 
单位:1.成都先进金属材料产业技术研究院股份有限公司 特钢技术研究所  2.海洋装备用金属材料及其应用国家重点实验室 
关键词:镍基高温合金 多道次变形 开坯工艺 晶粒粗大 完全再结晶 
分类号:TG316
出版年,卷(期):页码:2023,48(3):244-254
摘要:

 使用不同应变速率、不同应变量的阶段式降温工艺对GH4065A镍基高温合金在多道次压缩变形过程中的组织演变进行研究。结果显示:通过两道次各50%的压缩量即累积75%的工程应变量可以获得与相同温度、相同应变速率下单道次70%工程应变量接近的完全再结晶且晶粒细小的组织,即累积真应变达到1.39以上。每道次低于50%的工程应变量易产生未完全再结晶的“项链组织”或导致晶粒粗大。通过Deform模拟的直径为Φ508 mm的铸锭开坯过程显示,设置的变形工艺可实现在两镦两拔的情况下,使坯料中心部位的累积等效应变达到1.39以上,组织完全再结晶,而两端部分还有部分累积等效应变未能达到1.39,需要第3火次的变形以实现完全再结晶。变形过程中的晶粒粗大问题需要通过调节γ′相的析出来控制。

 The microstructure evolution of nickel-base superalloy GH4065A during the multi-pass compression deformation process using staged cooling process with different strain rates and different strain amounts was studied. The results show that by accumulating the engineering strain amount of 75% in two passes with each compression amount of 50%, a fully recrystallized and fine-grained structure close to the 70% engineering strain amount in a single pass under the same temperature range and the same strain rate can be obtained, that is, the accumulated true strain reaches above 1.39. A engineering strain amount of lower than 50% in each pass is likely to cause incompletely crystallized “necklace structure” or coarse grains. The cogging process of cast with the diameter of Φ508 mm simulated by Deform shows that the set deformation process is able to allow the central part of billet to reach the accumulated more than the equivalent strain of 1.39 and to reach complete recrystallization by two-time upsetting and two-time pulling, whereas two ends are still partially failed to reach the accumulated equivalent strain of 1.39, requiring the third deformation to achieve complete recrystallization. And, the problem of coarse grains during deformation needs to be controlled by adjusting the precipitation of γ′ phase.

基金项目:
作者简介:
作者简介:税烺(1987-),男,博士,高级工程师 E-mail:ustb1234@126.com
参考文献:

 [1]陈益哲, 庞玉华,王建国,等. GH2907高温合金热加工工艺窗口的建立与验证[J]. 锻压技术,2022,47(8):224-234.


Chen Y Z,Pang Y H,Wang J G,et al. Establishment and verification on hot working process window for superalloy GH2907 [J]. Forging & Stamping Technology,2022,47(8):224-234.

[2]方军, 吴敏,张涛,等. GH4169高温合金螺栓热锻成形工艺[J]. 锻压技术,2022,47(3):8-22.

Fang J,Wu M,Zhang T,et al. Hot forging process on superalloy GH4169 bolt[J]. Forging & Stamping Technology,2022,47(3):8-22.

[3]金宏, 殷银银,刘乐,等. 航天用超大规格GH4169高温合金螺栓热镦工艺[J]. 锻压技术,2022,47(6):55-60.

Jin H,Yin Y Y,Liu L,et al. Hot upsetting process of super-sized superalloy GH4169 bolts for aerospace[J]. Forging & Stamping Technology,2022,47(6):55-60.

[4]肖刚锋, 张义龙,夏琴香,等. 镍基高温合金锥筒形件拉深旋压时成形质量及组织性能研究[J]. 锻压技术,2021,46(9):190-196.

Xiao G F,Zhang Y L,Xia Q X,et al. Research on forming quality,microstructure and properties for Ni-based superalloy conical-cylindrical parts during deep-drawing spinning [J]. Forging & Stamping Technology,2021,46(9):190-196.

[5]王岩, 谷宇,王珏,等. 铸态镍基高温合金GH4698热变形行为[J]. 锻压技术,2021,46(11):250-254.

Wang Y,Gu Y,Wang J,et al. Hot deformation behavior of as-cast Ni-based superalloy GH4698[J]. Forging & Stamping Technology,2021,46(11):250-254.

[6]Powell A, Bond B,O′Brien C, et al. Development of a new cast and wrought alloy (Rene 65) for high temperature disk applications[A]. Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives[C]. USA,2014.

[7]O′Brien C, Heaney J, Russell J, et al. Rene65 billet material for forged turbine components[A]. Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives[C]. USA, 2014.

[8]Wojcik T, Rath M, Kozeschnik E. Charaterisation of secondary phases in Ni-based superalloy Rene 65[J]. Materials Science and Technology, 2018, 34: 1-7.

[9]赵光普, 黄烁,张北江,等. 新一代镍基变形高温合金GH40654A的组织控制与力学性[J]. 钢铁研究学报,2015,27(2):40-47.

Zhao G P, Huang S, Zhang B J, et al. Microstructure control and mechanical properties of the newest nickel-based wrought superalloy GH4065A [J]. Journal of Iron and Steel Research, 2015, 27(2):40-47.

[10]杜金辉, 赵光普,邓群,等. 中国变形高温合金研制进展[J].航空材料学报,2016, 36(3): 27-39.

Du J H, Zhao G P, Deng Q, et al. Develop of wrought superalloy in China[J]. Journal of Aeronautical Materials, 2016, 36(3): 27-39.

[11]刘巧沐, 黄顺洲,刘佳,等. 高温材料研究进展及其在航空发动机上的应用[J].燃气涡轮试验与研究,2014, 27(4): 51-56.

Liu Q M, Huang S Z, Liu J, et al. Progress and application of high temperature structural materials on aero-engine[J]. Gas Turbine Experiment and Research, 2014, 27(4): 51-56.

[12]张北江, 赵光普,张文云,等. 高性能涡轮盘材料GH4065及其先进制备技术研究[J].金属学报,2015, 51(10): 1227-1234.

Zhang B J, Zhao G P, Zhang W Y, et al. Investigation of high performance disc alloy GH4065 and associated advanced processing technologies[J]. Acta Metallurgica Sinica, 2015, 51(10): 1227-1234.

[13]张北江, 黄烁,张文云,等. 变形高温合金盘材及其制备技术研究进展[J],金属学报,2019, 55(9): 1095-1114.

Zhang B J, Huang S, Zhang W Y, et al. Recent development of nickel-based disc alloys and corresponding cast-wrought processing techniques[J]. Acta Metallurgica Sinica, 2019, 55(9): 1095-1114.

[14]Laurence A, Cormier J, Villechaise P, et al. Impact of the solution cooling rate and of thermal aging on the creep properties of the new cast & wrought René 65 Ni-based superalloy[A]. Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives[C]. TMS, Pittsburgh:  2014.

[15]Olufayo O A, Che H, Songmene V, et al. Machinability of Rene 65 superalloy[J]. Materials, 2019, 12: 2034.

[16]Gourdin S, Cormier J, Henaff G, et al. Assessment of specific contribution of residual stress generated near surface anomalies in the high temperature fatigue life of a René 65 superalloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40: 69-80.

[17]Charpagne M A, Vennegues P, Billot T, et al. Evidence of multimicrometric coherent γ′ precipitates in a hot-forged γ-γ′ nickel-based superalloy[J]. Journal of Microscopy, 2016, 263:106-112.

[18]Minisandram R S, Jackman L A, Russell J L, et al. Recrystallization response during thermo-mechanical processing of alloy René 65 billet[A]. Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives[C]. TMS, Pittsburgh: 2014.

[19]Zhang B J, Zhao G P, Zhang W Y, et al. Deformation mechanisms and microstructural evolution of γ+γ′ aggregates generated during thermomechanical processing of nickel-base superalloys[A]. Proceedings of the 13th International Symposium on Superalloys[C].USA,2016.

[20]董建新. 镍基合金管材挤压及组织控制[M].北京:冶金工业出版社,2014.

Dong J X. Extrusion and Microstructure Control of Nickel Based Alloy Pipe [M]. Beijing: Metallurgical Industry Press, 2014.

[21]Koul A K, Immarigeon J-P A. Modelling of plastic flow in coarse grained nickel-base superalloy compacts under isothermal forging conditions[J]. Acta Metallurgica, 1987, 35:1791-1805.

[22]Kaibyshev O A, Utyashev F Z, Valitov V A. Effect of γ′-phase content on preparation schedule for structure and superplasticity of high-temperature nickel alloys[J]. Metal Science and Heat Treatment,1989, 31(7):526-532.

[23]Valitov V A, Salishchev G, Mukhtarov S. Superplasticity of nickel-based alloys with sub-microcrystalline structure[A].Materials Science Forum[C]. Trans.Tech.Publications, Switzerland: 1997.

[24]Valitov V A,Utyashev F Z,  Mukhtarov S. Formation of microcrystalline structures and superplastic properties of nickel based alloys[A]. Materials Science Forum[C]. Trans.Tech.Publications, Switzerland: 1999.

[25]Wen J T, Pollock T M. Deformation and strain storage mechanisms during high-temperature compression of a powder metallurgy nickel-base superalloy[J]. Metallurgical and Materials Transactions A, 2010, 41A(8): 2002-2009.

[26]Robson J D. Modeling competitive continuous and discontinuous precipitation[J]. Acta Materialia, 2013, 61:7781-7790.

[27]Bozzolo N, Soua N, Logé R E. Evolution of microstructure and twin density during thermomechanical processing in a γ-γ′ nickel-based superalloy[J]. Acta Materialia, 2012, 60: 5056-5066.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9