网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
冲击装置对磁脉冲冲击介质成形的影响
英文标题:Influence of impacting device on impact medium forming for magnetic pulse
作者:徐俊瑞1 2 3 王少博1 王元丰1 
单位:1. 内蒙古工业大学  2. 先进轻金属材料开发与加工防护教育部工程研究中心  3. 内蒙古自治区轻金属材料重点实验室 
关键词:磁脉冲成形 冲击介质 冲击装置 镁合金板材 底面直径 台阶直径 锥体底角 
分类号:TG316
出版年,卷(期):页码:2023,48(4):48-55
摘要:

 针对冲击装置结构,探究底部直径、台阶直径、锥体底角等参数变化对其几何结构的影响。利用有限元仿真方法,考虑材料高应变速率和介质超弹性本构关系,建立磁场和变形场模型,分析冲击装置的结构参数对成形高度、应变速率和冲击速度的影响。结果表明:随底部直径减小,板材的成形高度和冲击装置的冲击速度增加,无台阶与小台阶下的成形高度接近,板材中心第1个应变速率峰值增加;台阶直径减小,更有利于提高冲击装置的冲击速度,提升成形高度;底部直径一定时,板材的成形高度随着锥体底角的减小趋于增加;底部直径减小到一定程度时,锥体底角对成形高度的影响不明显。

 For impact device structure, the influences of parameters variation, such as bottom diameter, step diameter and cone bottom angle, on the geometry structure of impact device were researched, and considering the high strain rate of material and the medium hyperelastic constitutive relationship, the electromagnetic field and deformation field models were built by finite element simulation method. Then, the influences of structural parameters of impact device on the forming height, strain rate and impact velocity were analyzed. The results show that as the bottom diameter decreases, the forming height of sheet and the impact velocity of impact device increase, the forming height of no step is close to that of a small step, and the first strain rate peak value in the center of sheet increases. However, the decrease of step diameter is more conductive to improve the impact velocity of impact device and increase the forming height of sheet. When the bottom diameter is constant, the forming height tends to increase with the decreasing of cone bottom angle. When the bottom diameter is reduced to a certain extent, the influence of cone bottom angle on the forming height is not obvious. 

基金项目:
国家自然科学基金资助项目(51965050);内蒙古自然科学基金资助项目(2021MS05004)
作者简介:
作者简介:徐俊瑞(1979-),男,博士,教授 E-mail:xujunrui_hit@163.com
参考文献:

 
[1]Verena P, Risch D, Brad K, et al. Electromagnetic forming-A review
[J]. Journal of Materials Processing Technology, 2011, 211(5): 787-829.



[2]Xu J R, Xie X Y, Wen Z S, et al. Deformation behaviour of AZ31 magnesium alloy sheet hybrid actuating with Al driver sheet and temperature in magnetic pulse forming
[J]. Journal of Manufacturing Processes, 2019, 37: 402-412.
[3]Xu J R, Zhou Y Q, Cui J J, et al. Effects of temperature and driver sheet for magnesium alloy sheet in magnetic pulse forming
[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95: 3319-3333.


[4]Cui X H, Du Z H, Xiao A, et al. Electromagnetic partitioning forming and springback control in the fabrication of curved parts
[J]. Journal of Materials Processing Technology, 2021, 288:116889.


[5]Oliveira D A, Worswick M J, Finn M, et al. Electromagnetic forming of aluminum alloy sheet: Free-form and cavity fill experiments and model
[J]. Journal of Materials Processing Technology, 2005, 170: 350-362.


[6]Shang J H, Glenn D. Electromagnetically assisted sheet metal stamping
[J]. Journal of Materials Processing Technology, 2011, 211: 868-874.


[7]Ulacia I, Hurtado I, Imbert J, et al. Experimental and numerical study of electromagnetic forming of AZ31B magnesium alloy sheet
[J]. International Steel Research, 2009, 8(5): 344-350. 


[8]Su H J, Huang L, Li J J, et al. Inhomogeneous deformation behaviors of oblique hole-flanging parts during electromagnetic forming
[J]. Journal of Manufacturing Processes, 2020, 52: 1-11.


[9]Yu H P, Chen I, Liu W, et al. Electromagnetic forming of aluminum circular tubes into square tubes: Experiment and numerical simulation
[J]. Journal of Manufacturing Processes, 2018, 31: 613-623.


[10]Xu J R, Hua M X, Feng Y H, et al. Electromagnetic impacting medium forming (EIMF) for aluminum alloy tube by using flat spiral coil
[J]. International Journal of Material Forming, 2021, 14: 607-622.


[11]Xu J R, Wang Y Y, Wen Z S, et al. Electromagnetic impacting medium forming (EIMF): A new method forming process for magnesium alloy sheet
[J]. International Journal of Advanced Manufacturing Technology, 2020, 109: 553-563.


[12]徐俊瑞, 李毅,谢雪云,等. 基于磁脉冲冲击弹性介质的5052铝合金板材胀形试验研究
[J]. 塑性工程学报,2021,28(5):226-233.

Xu J R,Li Y,Xie X Y,et al. Experimental research for magnetic pulse impacting elastic medium bulging of 5052 aluminum alloy sheet
[J]. Journal of Plasticity Engineering, 2021, 28 (5): 226-233.


[13]Cao Z Q, Zuo Y J. Electromagnetic riveting technique and its applications
[J]. Chinese Journal of Aeronautics, 2020, 33(1): 5-15. 


[14]Liu J G, Wang Z J. Prediction of wrinkling and fracturing in viscous pressure forming (VPF) by using the coupled deformation sectional finite element method
[J]. Computational Materials Science, 2010, 48: 381-389.


[15]Shergold O A, Fleck N A, Radford D. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates
[J]. International Journal of Impact Engineering, 2006, 32(9): 1384-1402.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9