网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于响应面法和NSGA-Ⅱ的接线盒仿真优化
英文标题:Simulation optimization on junction box based on response surface method and NSGA-Ⅱ
作者:叶恒昌 龚红英 张志强 赵江波 
单位:上海工程技术大学 
关键词:接线盒 响应面法 NSGA-Ⅱ 压边力 模具间隙 摩擦因数 
分类号:TG386.1
出版年,卷(期):页码:2023,48(4):72-76
摘要:

 在接线盒的成形过程中,为了解不同因素对接线盒成形质量的影响,获得最佳的成形参数,通过Dynaform建立有限元模型,结合Design-Expert软件设计响应面试验,通过试验获得最大减薄率和最大增厚率的多项式回归响应模型,进一步得出虚拟压边力、模具间隙和摩擦因数对工件最大减薄率和最大增厚率的影响程度,利用带精英策略的非支配排序遗传算法(NSGA-Ⅱ)对最大减薄率和最大增厚率进行优化求解,得到最优工艺参数为:压边力为21400 N,模具间隙为1.25 mm,摩擦因数为0.08。最后在Dynaform中进行仿真试验,并结合实际生产进行验证。研究结果为接线盒的实际生产提供了理论基础。

 In the forming process of junction box, in order to understand the influences of different factors on the forming quality of junction box and obtain the optimal forming parameters, the finite element model was established by Dynaform, and combining with Design-Expert software to design the response surface test, and a polynomial regression response model for maximum thinning rate and maximum thickening rate was obtained by experiments. Then, the influence degrees of virtual blank holder force, die clearance and friction coefficient on the maximum thinning rate and the maximum thickening rate of workpiece were further determined, and the maximum thinning rate and the maximum thickening rate were optimized and solved by the non-dominated sorting genetic algorithm with elitist strategy (NSGA-II)to obtain the optimal process parameters as the blank holder force of 21400 N, the die clearance of 1.25 mm and the friction coefficient of 0.08. Simulation experiments were conducted by Dynaform, and the results were validated in the actual production. The study result provides a theoretical basis for the actual production of junction box.

基金项目:
上海工程技术大学校企产学合作资助项目((19)CL-041);上海工程技术大学高水平高峰学科项目
作者简介:
作者简介:叶恒昌(1998-),男,硕士研究生 E-mail:1692591090@qq.com 通信作者:龚红英(1974-),女,博士,教授 E-mail:ghyyw@163.com
参考文献:

 
[1]周启航. 铝合金接线盒压铸工艺及模具数值模拟研究
[D].大连:大连交通大学,2020.


Zhou Q H. Research on Die-casting Process and Mold Numerical Simulation of Aluminum Alloy Junction Box
[D]. Dalian: Dalian Jiaotong University, 2020.


[2]施为钟, 龚红英,王斌,等.基于响应面法与NSGA-Ⅱ的汽车C柱零件成形质量多目标优化
[J].塑性工程学报,2021,28(8):30-37.

Shi W Z, Gong H Y, Wang B, et al. Multi-objective optimization of forming quality of automotive C-pillar parts based on response surface methodology and NSGA-Ⅱ
[J]. Journal of Plastic Engineering,2021, 28(8): 30-37.


[3]张忠芳, 刘棒棒,宗珂.某覆盖件冲压成形工艺分析及仿真模拟
[J].锻造与冲压,2021,(24):50-53.

Zhang Z F, Liu B B, Zong K. Analysis and simulation of stamping forming process for a cover part
[J]. Forging & Metalforming, 2021, (24): 50-53.


[4]于传浩, 张毅.基于Dynaform的凸缘圆筒件拉深工艺有限元分析
[J].锻压技术,2022,47(2):56-61.

Yu C H, Zhang Y. Finite element analysis of deep drawing process of flange and cylindrical parts based on Dynaform
[J].Forging & Stamping Technology,2022,47(2):56-61.


[5]邱超斌, 张猛,郎利辉,等.基于神经网络遗传算法的深腔型零件拉深工艺参数优化
[J].精密成形工程,2021,13(5):173-179.

Qiu C B, Zhang M, Lang L H, et al. Optimization of drawing process parameters for deep cavity parts based on neural network genetic algorithm
[J]. Precision Forming Engineering, 2021, 13(5):173-179.


[6]宋杰. 基于Dynaform的AZ91D镁合金盘体冲锻工艺优化
[J].热加工工艺,2021,50(7):89-91,96.

Song J. Optimization of punching and forging process for AZ91D magnesium alloy plate based on Dynaform
[J].Hot Working Technology,2021,50(7):89-91,96.


[7]梁发周, 钟圣滔.基于AutoForm模拟的汽车B柱加强板热冲压工艺分析与优化设计
[J].锻压技术,2022,47(12):75-80.

Liang F Z, Zhong S T. Analysis and optimized design of hot stamping process for automotive B-pillar reinforcement plate based on AutoForm simulation
[J]. Forging & Stamping Technology, 2022,47(12), 75-80.


[8]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法
[S].

GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature
[S].


[9]王孝培. 冲压手册
[M]. 第2版. 北京:机械工业出版社, 1990.

Wang X P. Stamping Manual
[M]. 2nd Edition. Beijing: China Machine Press, 1990.


[10]覃柏英, 秦文东,林贤坤,等.响应面法在发动机隔热罩冲压成形工艺参数优化中的应用
[J].锻压技术,2016,41(3):22-28.

Qin B Y, Qin W D, Lin X K, et al. Application of response surface methodology in optimization of process parameters for stamping and forming of engine heat shields
[J]. Forging & Stamping Technology, 2016, 41(3): 22-28.


[11]马永杰, 云文霞.遗传算法研究进展
[J].计算机应用研究, 2012,(4):1201-1206.

Ma Y J, Yun W X. Research progress of genetic algorithm
[J]. Research on Computer Application, 2012, (4):1201-1206.


[12]李宇, 赵博宁.基于遗传算法的冲压工艺参数优化研究
[J].今日制造与升级,2022,(4):109-112.

Li Y, Zhao B N. Research on stamping process parameter optimization based on genetic algorithm
[J]. Today′s Manufacturing and Upgrade, 2022, (4):109-112.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9