网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
包覆叠轧TC4钛合金薄板的组织与力学性能
英文标题:Microstructure and mechanical properties of TC4 titanium alloy thin sheet by cladding-rolling
作者:李峰丽1 张明玉2 于成泉3 岳旭1 同晓乐1 张亚峰1 
单位:1. 新疆湘润新材料科技有限公司 2. 大连交通大学 3. 长春工业大学 
关键词:TC4钛合金薄板 包覆叠轧 微观组织 力学性能 强度 断后伸长率 
分类号:TG335.4
出版年,卷(期):页码:2023,48(4):138-143
摘要:

 选取包覆叠轧工艺生产两种不同规格的TC4钛合金薄板,通过光学显微镜、XRD衍射仪、室温拉伸和高温拉伸性能试验,对两种不同规格的TC4钛合金薄板进行微观组织和力学性能研究。结果表明:经轧制退火后薄板的金相组织由α相与残余β相构成,组织中未见明显的β转变组织,α相的形貌呈现出长条状、等轴状以及块状,α相之间为残余β相。两种规格的薄板的XRD图谱中各角度的α相衍射峰相比β相衍射峰较强,厚度为0.8 mm的薄板在(102)、(200)晶面指数的衍射峰更强。厚度为0.8 mm的薄板的室温强度较厚度为2.0 mm薄板的要高,其抗拉强度最大值为1077 MPa,屈服强度最大值为1029 MPa,两种规格薄板的断后伸长率大致相同,最大值为16.5%。薄板在500 ℃的抗拉强度较400 ℃时要低,在变形温度为400 ℃时,厚度为0.8 mm的薄板RD方向的强度达到最大值,抗拉强度为782 MPa,屈服强度为649 MPa;在变形温度为500 ℃ 时,厚度为2.0 mm的薄板TD方向的塑性达到最大值,其断后伸长率为29%。

 TC4 titanium alloy thin sheets with two different specifications were produced by cladding-rolling process, and their microstructure and mechanical properties were studied by optical microscope, XRD diffractometer, room temperature tensile test and high temperature tensile test. The results show that the metallographic structure of the thin sheet after rolling and annealing is composed of α phase and residual β phase, there is no obvious β transformation structure in the structure, the morphology of α phase presents linear, equiaxed and blocky, and there is residual β phase between α phases. The diffraction peaks of α phase at different angles in the XRD patterns of the two specification of thin sheet are stronger than those of β phase, and the diffraction peaks of the (102) and (200) crystal plane indexes for the thin sheet with a thickness of 0.8 mm are stronger. The room temperature strength of the thin sheet with a thickness of 0.8 mm is higher than that of the sheet plate with a thickness of 2.0 mm, the maximum tensile strength is 1077 MPa, and the maximum yield strength is 1029 MPa. The elongation after fracture of the two specifications of thin sheet are roughly the same, and the maximum value is 16.5%. The tensile strength of the thin sheet at 500 ℃ is lower than that at 400 ℃. At the deformation temperature of 400 ℃, the strength in the RD direction of the thin sheet with a thickness of 0.8 mm reaches the maximum, the tensile strength is 782 MPa, and the yield strength is 649 MPa. When the deformation temperature is 500 ℃, the plasticity of the thin sheet with a thickness of 2.0 mm reaches the maximum in the TD direction, and its elongation after fracture is 29%.

基金项目:
自治区创新环境(人才、基地)建设专项(XJQY2009);自治区创新环境(人才、基地)建设专项-天山创新团队计划项目(2020D14041)
作者简介:
作者简介:李峰丽(1977-),女,学士,高级工程师 E-mail:lifengli23@163.com
参考文献:

 
[1]Han J, Lu L, Xin Y, et al. Microstructure and mechanical properties of a novel functionally graded material from Ti6Al4V to Inconel 625 fabricated by dual wire+arc additive manufacturing
[J]. Journal of Alloys and Compounds, 2022, 903:981-992.



[2]李冬, 曾卫东, 李欣, 等. Ti60合金保温过程中片状组织的粗化行为
[J]. 稀有金属, 2022,46(3): 273-280.

Li D, Zeng W D, Li X, et al. Coarsening behavior of lamellar microstructure of Ti60 alloy during heat treatment
[J]. Chinese Journal of Rare Metals, 2022, 46(3): 273-280.


[3]Sahu P K, Pal S. Mechanical properties of dissimilar thickness aluminium alloy weld by single/double pass FSW
[J]. Journal of Materials Processing Technology, 2017, 243: 442-455.


[4]王维, 张鐘月, 赵朔, 等. LDM连接及SLM成形TC4合金的组织与性能
[J]. 稀有金属, 2022, 46(8): 998-1005.

Wang W, Zhang Z Y, Zhao S, et al. Microstructure and properties of LDM connecting and SLM forming TC4 alloy
[J]. Chinese Journal of Rare Metals, 2022, 46(8): 998-1005.


[5]Zheng Q, Feng X, Shen Y, et al. Effect of plunge depth on microstructure and mechanical properties of FSW lap joint between aluminum alloy and nickel-base alloy
[J]. Journal of Alloys & Compounds, 2017, 695: 952-961.


[6]张国霞, 田云飞,王国栋,等. 超塑成形用TC4钛合金薄板轧制工艺试验研究
[J]. 热加工工艺, 2018, 47(17): 44-46, 50.

Zhang G X, Tian Y F, Wang G D, et al. Experimental study on rolling process of TC4 titanium sheet for superplastic forming
[J]. Hot Working Technology, 2018, 47(17): 44-46, 50.


[7]洪权, 赵永庆, 杨冠军, 等. Ti-6Al-4V合金包覆叠轧薄板的加工工艺与组织性能研究
[J]. 材料工程, 2004, (11): 15-17.

Hong Q, Zhao Y Q, Yang G J, et al. Effects of pack ply-rolling process on microstructure and mechanical properties of Ti-6Al-4V alloy sheets
[J]. Journal of Materials Engineering, 2004, (11): 15-17.


[8]GB/T 23605—2020,钛合金β转变温度测定方法
[S].

GB/T 23605—2020,Determination of β transus temperature of titanium alloys
[S].


[9]张磊. Ti-811钛合金薄板轧制及热处理工艺研究
[D].西安: 西安建筑科技大学, 2019.

Zhang L. Study on Rolling and Heat Treatment of Ti-811 Titanium Alloy Sheet
[D]. Xi′an: Xi′an University of Architecture and Technology, 2019.


[10]Barnett M R, Kestens L. Formation of {111 and 111} textures in cold rolled and annealed IF sheet steel
[J]. ISIJ International, 1999, 39(9): 923-929.


[11]Chung W C, Tsat L W, Chen C. Microstructure and notch proper-ties of heat-treated Ti-4.5 Al-3V-2Mo-2Fe laser welds
[J]. Materials Transactions, 2009, 50(3): 544-550.


[12]Esmaily M, Mortazavi S N, Todehfalah P, et al. Microstructural characterization and formation of α′martensite phase in Ti-6Al-4V alloy butt joints produced by friction stir and gas tungsten arcwelding processes
[J]. Materials & Design, 2013, 47: 143-150.


[13]毛江虹, 杨晓康, 罗斌莉, 等. 热处理温度对TC4ELI合金组织与性能的影响
[J]. 金属热处理, 2020, 45(2): 166-174.

Mao J H, Yang X K, Luo B L, et al. Effect of heat treatment temperature on microstructure and mechanical properties of TC4ELI alloy
[J]. Heat Treatment of Metals, 2020, 45(2): 166-174.


[14]Ren Y, Xue Z Y, Luo W B, et al. Effect of shock stress amplitude on the post-shock mechanical response and substructural evolution of Ti-6Al-4V alloy
[J]. Mechanics of Materials, 2018, 117: 1-8.


[15]朱新杰, 范群波, 余洪, 等. Ti-4.5Mo-5.1Al-1.8Zr-1.1Sn-2.5Cr-2.9Zn钛合金的动态力学性能及失效研究
[J]. 稀有金属材料与工程, 2020, 49(4): 1235-1241.

Zhu X J, Fan Q B, Yu H, et al. Dynamic mechanical properties and failure of Ti-4.5Mo-5.1Al-1.8Zr-1.1Sn-2.5Cr-2.9Zn alloy
[J]. Rare Metal Materials and Engineering, 2020, 49(4): 1235-1241.


[16]李超, 张晓泳, 李志友, 等. 热处理对超细晶Ti-55511近β钛合金显微组织和力学性能的影响
[J]. 中国有色金属学报, 2014, 24(5): 1251-1258.

Li C, Zhang X Y, Li Z Y, et al.Effect of heat treatment on microstructure and mechanical properties of ultra-fine grained Ti-55511 near β titanium alloy
[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(5): 1251-1258.


[17]张明玉, 运新兵, 伏洪旺. 不同热处理工艺对TC10钛合金组织及性能的影响
[J]. 塑性工程学报, 2021, 28(12): 237-245.

Zhang M Y, Yun X B, Fu H W. Effect of different heat treatment processes on microstructure and properties of TC10 titanium alloy
[J]. Journal of Plasticity Engineering, 2021, 28(12): 237-245.


[18]苏娟华, 邵鹏, 任凤章. TA10钛合金的高温拉伸断裂极限
[J]. 金属热处理, 2018, 43(4): 24-28.

Su J H, Shao P, Ren F Z. Tensile fracture limit of TA10 titanium alloy at high temperature
[J]. Heat Treatment of Metals, 2018, 43(4): 24-28.


[19]吴迪鹏, 武永, 陈明和, 等. TC31钛合金板材高温流变行为及组织演变研究
[J]. 稀有金属材料与工程, 2019, 48(12): 3901-3910.

Wu D P, Wu Y, Chen M H, et al. High temperature flow behavior and microstructure evolution of TC31 titanium alloy sheets
[J]. Rare Metal Materials and Engineering, 2019, 48(12): 3901-3910.


[20]Williams J C, Baggerly R G, Paton N E. Deformation behavior of HCP Ti-Al alloy single crystals
[J]. Metallurgical & Materials Transactions A, 2002, 33(3): 837-850.


[21]Li H, Boehlert C J, Bieler T R, et al. Analysis of the deformation behavior in tension and tension-creep of Ti-3Al-2.5V (wt pct) at 296 K and 728 K (23 ℃ and 455 ℃) using in situ SEM experiments
[J]. Metallurgical & Materials Transactions A, 2014, 45(13): 6053-6066.


[22]Huang Y, Gao H, Nix W D, et al. Mechanism-based strain gradient plasticity-II. Analysis
[J]. Journal of the Mechanics and Physics of Solids, 2000, 48: 99-128.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9