网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于SSAE-LSTM模型的冷连轧机扭振预测
英文标题:Torsional vibration prediction on tandem cold rolling mill based on SSAE-LSTM
作者:张瑞成 刘力菲 梁卫征 
单位:华北理工大学 
关键词:轧机 扭转振动 振动预测 特征提取 栈式稀疏自编码 长短时记忆网络 
分类号:TG335
出版年,卷(期):页码:2023,48(4):193-198
摘要:

 轧机振动预测模型性能依赖于从输入变量中提取的特征。针对冷连轧机振动数据样本大、非线性强的特点,且在时间上具有前后依赖关系,提出了一种基于SSAE-LSTM的轧机扭振预测方法。首先,对于同种参数数值差异较小、关系表征不明显的轧制过程参数,使用栈式稀疏自编码(SSAE)网络进行无监督自适应特征提取,挖掘生产数据的深层次特征。然后,利用长短时记忆(LSTM)网络在处理时间序列上的优势,将SSAE网络提取到的深层特征作为预测模型的输入,将旋转角加速度作为输出,建立基于LSTM的轧机扭振预测模型。仿真结果表明:SSAE-LSTM模型的预测精度达98.5%,与RNN模型和LSTM模型相比,预测精度分别提高了24.8%和12.2%,验证了该方法的有效性,为实时预测轧机扭振状态提供了参考。

 The performance of rolling mill vibration prediction model depends on the features extracted from input variables. Therefore, aiming at the characteristics of large sample size and strong nonlinearity for the vibration data of tandem cold rolling mill, and the forward and backward dependencies in the time, a prediction method of rolling mill torsional vibration based on SSAE-LSTM was proposed. Firstly, for the rolling process parameters with small numerical differences and indistinct relationship representation of the same parameters, a stacked sparse autoencoder(SSAE)network was used for unsupervised adaptive feature extraction to mine the deep-level features of production data. Then, taking the advantage of long short-term memory (LSTM) network in dealing with time series, the deep-level features extracted by SSAE network were used as the input of the prediction model,and the rotational angular acceleration was used as the output to establish the rolling mill torsional vibration prediction model based on LSTM. The simulation results show that the prediction accuracy of SSAE-LSTM model is 98.5%. Compared with RNN model and LSTM model, the prediction accuracy of SSAE-LSTM model is improved by 24.8% and 12.2% respectively, and the validity of the method is verified, which provides the reference for the real-time prediction of the rolling mill torsional vibration state.

基金项目:
河北省自然科学基金资助项目(F2018209201);唐山市科技局科技计划项目(22130213G);河北省省属高校基本科研业务费资助项目(JQN2021021)
作者简介:
作者简介:张瑞成(1975-),男,博士,教授 E-mail:rchzhang@126.com 通信作者:梁卫征(1982-),女,硕士,副教授 E-mail:709010346@qq.com
参考文献:

 
[1]张义方, 肖彪,闫晓强. 多源激励下冷连轧F5轧机振动问题研究
[J]. 工程力学,2022,39(2):235-243.


Zhang Y F, Xiao B, Yan X Q. Research on the vibration of cold rolling mill F5 under multi-source excitation
[J]. Engineering Mechanics, 2022, 39(2): 235-243.


[2]侯福祥, 张杰,曹建国,等. 带钢冷轧机振动问题的研究进展及评述
[J]. 钢铁研究学报,2007,19(10):6-10.

Hou F X, Zhang J, Cao J G, et al. Review of chatter studies in cold rolling
[J]. Journal of Iron and Steel Research, 2007, 19(10): 6-10.


[3]Zheng Y J, Shen G X, Li Y G, et al. Spatial vibration and its numerical analytical method of four-high rolling mills
[J]. Journal of Iron and Steel Research International,2014,21(9):837-843.


[4]时培明, 夏克伟,刘彬,等. 多自由度轧机传动系统非线性非主共振扭振特性
[J]. 振动与冲击,2015,34(12):35-41.

Shi P M, Xia K W, Liu B, et al. Non-main resonance characteristics of nonlinear torsional vibration of rolling mill′s multi-degree-of-freedom main drive system
[J]. Journal of Vibration and Shock, 2015, 34(12):35-41.


[5]Mosayebi M, Zarrinkolah F, Farmanesh K. Calculation of stiffness parameters and vibration analysis of a cold rolling mill stand
[J]. Int. J. Adv. Manuf. Technol., 2017, 91: 4359-4369.


[6]彭荣荣. 液压缸非线性作用下轧机辊系振动特性及机理研究
[J]. 锻压技术, 2022, 47(11):172-178.

Peng R R. Research on vibration characteristics and mechanism for rolling mill rolls under nonlinear action of hydraulic cylinder
[J]. Forging & Stamping Technology, 2022, 47(11):172-178.


[7]王桥医, 崔明超,王瀚,等. 基于辊系多模态模式的连轧机机架间耦合振动系统模型的建立及仿真分析
[J]. 中南大学学报:自然科学版,2020,51(10):2834-2843.

Wang Q Y, Cui M C, Wang H, et al. Establishment and simulation analysis of coupled vibration system model between stands of tandem rolling mills based on rollers multi-modal mode
[J]. Journal of Central South University: Science and Technology, 2020, 51(10): 2834-2843.


[8]李聪, 张义方,童靳于,等. 1580热连轧机F2轧机异常振动问题分析
[J]. 噪声与振动控制,2021,41(5):103-108.

Li C, Zhang Y F, Tong J Y, et al. Analysis of abnormal vibration of F2 mill in the 1580 hot strip mill set
[J]. Noise and Vibration Control, 2021, 41(5):103-108.


[9]彭艳, 张明,刘宣亮,等. 基于数据驱动的轧机振动预测研究
[A].中国金属学会.第十一届中国钢铁年会论文集——S18.冶金自动化与智能管控
[C]. 北京:中国金属学会,2017.

Peng Y, Zhang M, Liu X L, et al. Research on rolling mill vibration prediction based on data drive
[A]. Chinese Society of Metals. Proceedings of the Eleventh China Iron and Steel Annual Conference-S18.Metallurgical Automation and Intelligent Control
[C]. Beijing: China Institute of Metals, 2017.


[10]Pian J, Tamanna M R, Abdulmajid A U. Study on HS-RNN in vibration prediction of mechanical spindle
[A]. 2021 33rd Chinese Control and Decision Conference (CCDC)
[C]. Kunming,2021.


[11]李福进, 刘尚瑜,史涛.LSTM-RNN在连铸下渣预测系统中的应用
[J].机械设计与制造,2022,(1):181-183.

Li F J, Liu S Y, Shi T. Application of LSTM-RNN in continuous casting slag prediction system
[J]. Machinery Design & Manufacture, 2022,(1):181-183.


[12]刘阳, 郜志英,周晓敏,等. 工业数据驱动下薄板冷轧颤振的LSTM智能预报
[J]. 机械工程学报,2020,56(11):121-131.

Liu Y, Gao Z Y, Zhou X M, et al. Industrial data-driven intelligent forecast for chatter of cold rolling of thin strip with LSTM recurrent neural network
[J]. Journal of Mechanical Engineering, 2020, 56(11):121-131.


[13]李世银, 朱媛,刘江,等.基于SAE-RF的三维UWB室内定位方法研究
[J].传感器与微系统,2021,40(8):46-49.

Li S Y, Zhu Y, Liu J, et al. Research on 3D UWB indoor positioning method based on SAE-RF
[J]. Transducer and Microsystem Technologies, 2021, 40(8):46-49.


[14]邓丽, 邬群勇, 杨水荣. 融合SSAE深度特征学习和LSTM网络的PM2.5小时浓度预测
[J]. 环境科学学报, 2020, 40(9): 3422-3434.

Deng L, Wu Q Y, Yang S R. Use of stack sparse auto-encoder (SSAE) deep feature learning and long short-term memory (SSAE-LSTM) neural network for the prediction of hourly PM2.5 concentration
[J]. Acta Scientiae Circumstantiae, 2020, 40(9):3422-3434.


[15]米凯夫, 张杰, 曹建国, 等. 基于小波和小波分形的冷连轧机振动识别方法
[J]. 北京科技大学学报, 2013, 35(8): 1064-1071.

Mi K F, Zhang J, Cao J G, et al. Vibration identification technology of tandem cold rolling mills based on wavelet and fractal analysis
[J]. Journal of University of Science and Technology Beijing, 2013, 35(8): 1064-1071.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9