网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
热锻模具结构参数与模具应力关系的数值模拟模具
英文标题:Numerical simulation of relationship between structural parameters and mold stress for hot forging mold
作者:廖海龙1 夏玉峰1 孙朝远1 2 刘洋2 蒋先宏1 陈磊1 滕海灏1 
单位:1. 重庆大学 2. 中国第二重型机械集团德阳万航模锻有限责任公司 
关键词:深型槽锻模 结构参数 拔模斜度 模具应力 成形载荷 
分类号:TG316
出版年,卷(期):页码:2023,48(4):210-217
摘要:

 为降低深型槽锻模型槽底部过渡圆角处的开裂风险,为锻模结构设计提供指导,通过所设计的模具探究了结构参数(型槽底部过渡圆角半径R、毛边槽桥部单边高度h、入口圆角半径r以及拔模斜度α)对模具应力(模具的最大主应力)的影响。采用单因素变量法,设计了4组模拟实验,共计24次有限元模拟,并通过对比成形载荷的模拟结果和已有研究预测结果来验证模拟的正确性。模拟结果表明:σmax(模具应力最大值)随着R的增大而减小,且二者呈现出较好的线性关系,即R增大1 mm,σmax下降约40 MPa;模具整体应力水平随着h的增大而迅速减小,但减小程度逐渐降低;r在1~7 mm变化时对模具应力的影响较小;α对模具应力的影响机理较为复杂,但总体而言,增大α会导致模具应力轻微上升。

 In order to reduce the cracking risk of transition fillet of the groove bottom of deep groove forging mold, and provide guidance for the structural design of forging mold, a mold was designed to study the influences of structural parameters (transition fillet radius of groove bottom R, single side height of bridge for flash groove h, inlet fillet radius r, draft angle α) on mold stress (maximum principal stress of mold). Then, four sets of simulation experiments were designed by using the single factor variable method, and a total of twenty-four finite element simulation experiments were carried out. Furthermore, the simulation correctness was verified by comparing the simulation results of forming load with the prediction results of existing studies. The simulation results indicate that σmax (maximum mold stress value) decreases with the increasing of R, and the two show a good linear relationship, that is, R increases by 1 mm, and σmax decreases by about 40 MPa. The overall stress level of mold decreases rapidly with the increasing of h, but the degree of reduction decreases gradually. r has little effect on the mold stress when r changes from 1 mm to 7 mm, and the influence mechanism of α on the mold stress is more complicated. In general, increasing α induces a slight increase in the mold stress.

基金项目:
国家自然科学基金资助项目(51775068);中央高校基本科研(2022CDJXY-010)
作者简介:
作者简介:廖海龙(1997-),男,硕士研究生 E-mail:lhl1243118402@163.com 通信作者:夏玉峰(1972-),男,博士,教授 E-mail:yufengxia@cqu.edu.cn
参考文献:

 
[1]顾冬冬, 张红梅, 陈洪宇,等. 航空航天高性能金属材料构件激光增材制造
[J]. 中国激光, 2020, 47(5): 32-55.


Gu D D, Zhang H M, Chen H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components
[J]. Chinese Journal of Lasers, 2020, 47(5): 32-55.


[2]Emamverdian A A, Sun Y, Cao C, et al. Current failure mechanisms and treatment methods of hot forging tools (dies)-A review
[J]. Engineering Failure Analysis, 2021, 129: 105678.


[3]纪小虎, 李萍,时迎宾,等. TA15钛合金等温多向锻造晶粒细化机理与力学性能
[J]. 中国有色金属学报, 2019, 29(11): 2515-2523.

Ji X H, Li P, Shi Y B, et al. Grain refinement mechanism and mechanical properties of TA15 alloy during multi-directional isothermal forging
[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(11): 2515-2523.


[4]Hibbe P, Wolfgarten M, Hirt G. Investigation of void closure in open-die forging considering changing load directions
[J]. Prod.Eng.-Res.Dev., 2019, 13(6): 703-711.


[5]Wang Z P, Wang J P, Huang C W, et al. Cracking failure analysis of steel piston forging die
[J]. Engineering Failure Analysis, 2022, 138: 106291.


[6]Chang K H, Shih C W, Tzou G Y . Defect improvement of extrusion dies using combination of fem stress analysis with the taguchi method
[J]. Transactions of the Canadian Society for Mechanical Engineering, 2015, 39(3): 729-738.


[7]Dehghani K, Jafari A. Finite element stress analysis of forging dies to improve their fatigue life
[J]. Materials Science-Poland, 2010, 28(1): 139-152.


[8]Vazquez V, Hannan D, Altan T. Tool life in cold forging-An example of design improvement to increase service life
[J]. Journal of Materials Processing Technology, 2000, 98(1): 90-96.


[9]Dalbosco M, da Silva Lopes G, Schmitt P D, et al. Improving fatigue life of cold forging dies by finite element analysis: A case study
[J]. Journal of Manufacturing Processes, 2021, 64: 349-355.


[10]Abishkenov M, Ashkeyev Z, Mashekov S, et al. Investigation of the stress-strain state of balls under deformation in a closed die
[J]. Metalurgija, 2020, 59(4): 559-562.


[11]Tzou G Y, Lin S H, Chen D C, et al. Die stress analysis and improvement of the welding valve fastener in multi-stage forging
[J]. Transactions of the Canadian Society for Mechanical Engineering, 2019, 44(2): 263-271.


[12]沈力. 基于损伤力学的锤锻模疲劳断裂分析及再制造工艺研究
[D]. 重庆:重庆大学,2016.

Shen L. Analysis of Hammer Forging Die Fatigue Fracture and Research of the Remanufacturing Process Based on Damage Mechanics
[D]. Chongqing: Chongqing University, 2016.


[13]张月婷. 某耳轴锤上模锻模具断裂及裂纹扩展研究
[D]. 重庆:重庆大学,2015.

Zhang Y T. A Trunnion of Hammer Forging on Fracture and Crack Propagation Research
[D]. Chongqing: Chongqing University, 2015.


[14]熊逸博. 航空发动机机匣锻造工艺优化及模具梯度堆焊再制造研究
[D]. 重庆:重庆大学,2018.

Xiong Y B. Research on Optimization of Forging Process for Aero-Engine Casing and Die Remanufacturing by Gradient Surfacing Welding
[D]. Chongqing: Chongqing University, 2018.


[15]李向阳. 游艇转向臂锻造工艺优化及模具寿命提升
[D]. 镇江:江苏大学,2020.

Li X Y.Optimization of Forging Process for Steering Arm of Yacht and Improvement for the Die Life
[D]. Zhenjiang: Jiangsu University, 2020.


[16]代伟, 易幼平, 李蓬川,等. 300M超高强钢起落架外筒模锻件锤锻工艺
[J]. 宇航材料工艺, 2012, 42(6): 100-104.

Dai W, Yi Y P, Li P C, et al. Hammer forging process for 300M ultra high strength steel die forging of landing gear cylinder
[J]. Aerospace Materials & Technology, 2012, 42(6): 100-104.


[17]黄顺喆, 厉勇,王春旭,等. 300M钢的热变形行为研究
[J]. 热加工工艺, 2010, 39(20): 25-28.

Huang S Z, Li Y, Wang C X, et al. Investigation on hot deformation behavior of 300M steel
[J]. Hot Working Technology, 2010, 39(20): 25-28.


[18]朱宗元. 我国热作模具钢性能数据集(续Ⅰ)
[J]. 机械工程材料, 2001, 25(2): 40-42.

Zhu Z Y. Property data collection of common hot working die steels used in China (Continued Ⅰ)
[J]. Materials For Mechanical Engineering, 2001, 25(2): 40-42.


[19]Liu Z, Li L, Yi J, et al. Influence of extrusion speed on the seam weld quality in the porthole die extrusion of AZ31 magnesium alloy tube
[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(1): 1039-1052.


[20]Li D, Jing Z, Yao M, et al. Simulation research on effect of extrusion parameters on welding pressure during porthole extrusion process of AZ91 pipe through angle welding chamber die
[J]. Rare Metal Materials and Engineering, 2021, 50(8): 2752-2759.


[21]Abd El Aal M I. 3D FEM simulations and experimental validation of plastic deformation of pure aluminum deformed by ECAP and combination of ECAP and direct extrusion
[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(6): 1338-1352.


[22]赵乙丞, 朱广伟,齐鹏,等. 基于圆环压缩和挤压-模拟法的Zr-4合金塑性成形摩擦因子测定
[J]. 工程科学学报, 2020, 42(2): 209-215.

Zhao Y C, Zhu G Y, Qi P, et al. Measurement of friction factor in plastic forming of Zr-4 alloy based on ring compression and extrusion-simulation
[J]. Chinese Journal of Engineering, 2020, 42(2): 209-215.


[23]俞汉清, 陈金德. 金属塑性成形原理
[M]. 北京:机械工业出版社, 1999.

Yu H Q, Chen J D. Principle of Metal Plastic Forming
[M]. Beijing: China Machine Press, 1999.


[24]徐芝纶. 弹性力学(上册)
[M]. 第4版. 北京:高等教育出版社, 2006.

Xu Z L. Elastic Mechanics:Volume I
[M]. 4nd Eidition. Beijing: Higher Education Press, 2016.


[25]姚泽坤. 锻造工艺学与模具设计
[M]. 西安:西北工业大学出版社, 2007.

Yao Z K. Forging Technology and Die Design
[M]. Xi′an: Northwestern Polytechnic University Press,2007.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9