[1] Fidelis I S, Idim A I. Design and implementation of hydrogen fuel cell as a means of alternative energy[J]. Science Publishing Group, 2021, 5(2): 51-58.
[2] Tawfik H, Hung Y, Mahajan D. Metal bipolar plates for PEM fuel cell-A review[J]. Journal of Power Sources, 2007, 163(2): 755-767.
[3] 李志鹏. 燃料电池钛金属双极板微流道多工步成形仿真与实验研究[D]. 上海:上海交通大学, 2020.
Li Z P. Simulation and Experimental Study on Multistage Forming of Micro Channel for Fuel Cell Titanium Bipolar Plate[D].Shanghai: Shanghai Jiao Tong University, 2020.
[4] 李章哲. 氢燃料电池钛双极板匀压力电磁成形方法和工艺研究[D]. 武汉:华中科技大学, 2020.
Li Z Z. A Uiniform Pressure Electromagnetic Forming Method and Process on Titanium Bipolar Plate of Hydrogen Fuel Cell[D]. Wuhan: Huazhong University of Science and Technology, 2020.
[5] 蔡兴华. 燃料电池304不锈钢双极板的电液成形工艺研究[D].哈尔滨: 哈尔滨工业大学, 2020.
Cai X H. Electrohydraulic Forming of 304 Stainless Steel Bipolar Plate for Fuel Cell[D]. Harbin: Harbin Institute of Technology, 2020.
[6] Hu Q H, Zhang D M, Fu H, et al. Investigation of stamping process of metallic bipolar plates in PEM fuel cell-Numerical simulation and experiments[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13770-13776.
[7] Peng L F, Lai X M, Dong A L, et al. Flow channel shape optimum design for hydroformed metal bipolar plate in PEM fuel cell[J]. Journal of Power Sources, 2008, 178(1): 223-230.
[8] Wang Y, Hou Y Z, Liu L, et al. Ultrasonic-assisted preparation-forming-curing process for ultra-thin micro-fiber metal laminates: Deformation characteristics[J]. Materials & Design, 2020, 777: 109019.
[9] Mckown S, Cantwell W J, Jones N. Investigation of scaling effects in fiber-metal laminates[J]. Journal of Composite Materials, 2008, 42: 865-888.
[10] Carrillo J G, Cantwell W J. Scaling effects in the tensile behavior of fiber-metal laminates[J]. Composites Science & Technology, 2007, 67(7): 1684-1693.
[11] 王耀, 宋国鹏, 杨超, 等. 微尺度纤维/金属混杂层板的低约束拉伸变形性能[J]. 锻压技术, 2022, 47(10): 63-71.
Wang Y, Song G P, Yang C, et al. Low constraint tensile deformation properties on micro scale fiber /metal hybrid laminates[J]. Forging & Stamping Technology, 2022, 47(10): 63-71.
[12] HB 7736.5—2004, 复合材料预浸料物理性能试验方法第 5部分: 树脂含量的测定[S].
HB 7736.5—2004, Test method for physical properties of composite material prepreg—Part 5: Determination of fiber mass per unit area[S] .
[13] HB 7736.3—2004, 复合材料预浸料物理性能试验方法第3部分: 纤维面密度的测定[S].
HB 7736.3—2004, Test method for physical properties of composite material prepreg—Part 3: Determination of fiber mass per unit area[S].
[14] HB 7736.2—2004, 复合材料预浸料物理性能试验方法第2部分: 面密度的测定[S].
HB 7736.2—2004, Test method for physical properties of composite material prepreg—Part 2: Determination of mass per unit area[S].
[15] HB 7736.4—2004, 复合材料预浸料物理性能试验方法第4部分: 挥发份含量的测定[S].
HB 7736.4—2004, Test method for physical properties of composite material prepreg—Part 4: Determination of volatiles content[S].
[16] 侯迎朝. GLARE层板低约束热介质成形及质量控制研究[D]. 天津:河北工业大学, 2022.
Hou Y Z. Study on Low Constraint Warm/hot Hydroforming and Quality Control of GLARE laminate[D]. Tianjin: Hebei University of Technology, 2022.
[17] 郭宏, 王耀, 宋国鹏, 等. 超薄微尺度碳纤维/TA1复合层板的拉伸断裂行为[J]. 锻压技术, 2022, 47(10): 72-81.
Guo H, Wang Y, Song G P, et al. Tensile fracture behavior for ultrathin micro scale carbon fibre/TA1 composite laminates[J]. Forging & Stamping Technology, 2022, 47(10): 72-81.
|