网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TA1/CFRP燃料电池双极板微流道充液成形性能及尺寸效应
英文标题:Hydro-formability and scale effect of TA1/CFRP fuel cell bipolar plate microchannels
作者:王耀1  2  3  4 郭宏1 叶晓凯1 郑四发3 赵丽滨1  4 胡宁1  2  4 
单位:1. 河北工业大学 机械工程学院  2. 河北工业大学 电工装备可靠性与智能化国家重点实验室  3. 清华大学苏州汽车研究院(相城) 4. 河北省跨尺度智能装备技术重点实验室 
关键词:超薄TA1/CFRP层板 充液成形 尺寸效应 双极板微流道 面外弯曲 
分类号:TB333
出版年,卷(期):页码:2023,48(5):16-24
摘要:

 以TA1钛合金和碳纤维预浸料为原材料,制备了不同类型的微尺度TA1/CFRP层板,并通过充液成形实验,研究了关键工艺及结构参数对TA1/CFRP层板微流道成形性能的影响,探究了层板在充液成形中的几何和摩擦尺寸效应。结果表明:通过改变液室加载路径发现,层板在流道内是以圆角、底部、侧壁的顺序填充,这对流道结构的设计具有一定的参考价值,在一定范围内增大流道宽度能够提高层板的成形性能。层板在成形过程中表现出明显的尺寸效应,从而产生面外弯曲现象,通过增加金属层厚度、改变成形摩擦状态均能弱化这种面外弯曲现象,提高层板的成形性能及质量。

 Different types of microscale TA1/CFRP laminates were prepared using TA1 titanium alloy and carbon fiber prepreg as raw materials. Through hydroforming experiments, the effects of key processes and structural parameters on the formability of microchannel for TA1/CFRP laminates were studied, and the geometric and frictional scale effects of laminates in hydroforming were explored. The results show that by changing the loading path of liquid chamber, it is found that the laminates are filled in the order of rounded corner, bottom and side wall in the channel. This has a certain reference value for the design of channel structure. Increasing the width of channel within a certain range can improve the formability of laminates. Laminates exhibit significant scale effects during the forming process, resulting in out of plane bending phenomenon. By increasing the thickness of metal layer and changing the forming friction state, this out of plane bending phenomenon can be weakened, and the formability and quality of laminates can be improved.

基金项目:
国家自然科学基金资助项目 (52005153);中国博士后科学基金资助项目 (2022T150372,2021M701962);中央引导地方科技发展项目(206Z1803G);天津市“项目+团队”重点培养专项(XC202052)
作者简介:
作者简介:王耀 (1986-),男,博士,副教授,E-mail:bhwy2014@126.com
参考文献:

[1] Fidelis I S, Idim A I. Design and implementation of hydrogen fuel cell as a means of alternative energy[J]. Science Publishing Group, 2021, 5(2): 51-58.


[2] Tawfik H, Hung Y, Mahajan D. Metal bipolar plates for PEM fuel cell-A review[J]. Journal of Power Sources, 2007, 163(2): 755-767.


[3] 李志鹏. 燃料电池钛金属双极板微流道多工步成形仿真与实验研究[D]. 上海:上海交通大学, 2020.


Li Z P. Simulation and Experimental Study on Multistage Forming of Micro Channel for Fuel Cell Titanium Bipolar Plate[D].Shanghai: Shanghai Jiao Tong University, 2020.


[4] 李章哲. 氢燃料电池钛双极板匀压力电磁成形方法和工艺研究[D]. 武汉:华中科技大学, 2020.


Li Z Z. A Uiniform Pressure Electromagnetic Forming Method and Process on Titanium Bipolar Plate of Hydrogen Fuel Cell[D]. Wuhan: Huazhong University of Science and Technology, 2020.


[5] 蔡兴华. 燃料电池304不锈钢双极板的电液成形工艺研究[D].哈尔滨: 哈尔滨工业大学, 2020.


Cai X H. Electrohydraulic Forming of 304 Stainless Steel Bipolar Plate for Fuel Cell[D]. Harbin: Harbin Institute of Technology, 2020.


[6] Hu Q H, Zhang D M, Fu H, et al. Investigation of stamping process of metallic bipolar plates in PEM fuel cell-Numerical simulation and experiments[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13770-13776.


[7] Peng L F, Lai X M, Dong A L, et al. Flow channel shape optimum design for hydroformed metal bipolar plate in PEM fuel cell[J]. Journal of Power Sources, 2008, 178(1): 223-230.


[8] Wang Y, Hou Y Z, Liu L, et al. Ultrasonic-assisted preparation-forming-curing process for ultra-thin micro-fiber metal laminates: Deformation characteristics[J]. Materials & Design, 2020, 777: 109019.


[9] Mckown S, Cantwell W J, Jones N. Investigation of scaling effects in fiber-metal laminates[J]. Journal of Composite Materials, 2008, 42: 865-888.


[10] Carrillo J G, Cantwell W J. Scaling effects in the tensile behavior of fiber-metal laminates[J]. Composites Science & Technology, 2007, 67(7): 1684-1693.


[11] 王耀, 宋国鹏, 杨超, . 微尺度纤维/金属混杂层板的低约束拉伸变形性能[J]. 锻压技术, 2022, 47(10): 63-71.


Wang Y, Song G P, Yang C, et al. Low constraint tensile deformation properties on micro scale fiber /metal hybrid laminates[J]. Forging & Stamping Technology, 2022, 47(10): 63-71.


[12] HB 7736.5—2004, 复合材料预浸料物理性能试验方法第 5部分: 树脂含量的测定[S].


HB 7736.5—2004, Test method for physical properties of composite material prepreg—Part 5: Determination of fiber mass per unit area[S]


[13] HB 7736.3—2004, 复合材料预浸料物理性能试验方法第3部分: 纤维面密度的测定[S].


HB 7736.3—2004, Test method for physical properties of composite material prepreg—Part 3: Determination of fiber mass per unit area[S].


[14] HB 7736.2—2004, 复合材料预浸料物理性能试验方法第2部分: 面密度的测定[S].


HB 7736.2—2004, Test method for physical properties of composite material prepreg—Part 2: Determination of mass per unit area[S].


[15] HB 7736.4—2004, 复合材料预浸料物理性能试验方法第4部分: 挥发份含量的测定[S].


HB 7736.4—2004, Test method for physical properties of composite material prepreg—Part 4: Determination of volatiles content[S].


[16] 侯迎朝. GLARE层板低约束热介质成形及质量控制研究[D]. 天津:河北工业大学, 2022.


Hou Y Z. Study on Low Constraint Warm/hot Hydroforming and Quality Control of GLARE laminate[D]. Tianjin: Hebei University of Technology, 2022.


[17] 郭宏, 王耀, 宋国鹏, . 超薄微尺度碳纤维/TA1复合层板的拉伸断裂行为[J]. 锻压技术, 2022, 47(10): 72-81.


Guo H, Wang Y, Song G P, et al. Tensile fracture behavior for ultrathin micro scale carbon fibre/TA1 composite laminates[J]. Forging & Stamping Technology, 2022, 47(10): 72-81.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9