网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
等温处理对Mg-3Y-4Nd-1Ni-0.5Zr合金半固态坯料件显微组织的影响
英文标题:Influence of isothermal treatment on microstructure of Mg-3Y-4Nd-1Ni-0.5Zr alloy semi-solid billet
作者:张虹桃1 邓涛1 鲁天慧1 林芯仪1 苏红亮1 权高峰2 曹万平1 
单位:1.航空工业成都飞机工业(集团)有限责任公司 2.西南交通大学 材料科学与工程学院 
关键词:等温加热法 稀土镁合金 半固态温度 保温时间 粗化合并机制 Ostwald熟化机制 
分类号:TG146.22
出版年,卷(期):页码:2023,48(5):51-60
摘要:

 采用半固态等温加热法,观察Mg-3Y-4Nd-1Ni-0.5Zr合金在不同半固态温度(580、595、610和625 ℃)和保温时间(5、15、30和60 min)下的微观组织形貌,研究工艺参数对显微组织演变的影响,得到晶粒粗化机制和最佳半固态触变成形工艺参数。结果表明:经过等温加热处理后,Mg-3Y-4Nd-1Ni-0.5Zr合金组织由细小的α-Mg晶粒转变为球形颗粒;随着半固态温度和保温时间的增加,Mg-3Y-4Nd-1Ni-0.5Zr合金的平均晶粒尺寸、液相率和形状系数逐渐增加。当半固态温度低于595 ℃或保温时间少于30 min时,半固态显微组织演变主要以晶粒长大为主,粗化合并机制起主导作用;当半固态温度高于610 ℃或保温时间超过30 min时,半固态显微组织液相增加和固相颗粒球状化,Ostwald熟化机制起主导作用。最佳工艺参数为:半固态温度为625 ℃、保温时间为15 min,此工艺参数下的Mg-3Y-4Nd-1Ni-0.5Zr合金的平均晶粒尺寸、液相率和形状系数分别为(60.9±3.1)μm,(31.2±1.4)%和(64.1±0.4)%。

The microstructure of Mg-3Y-4Nd-1Ni-0.5Zr alloy was observed by semi-solid isothermal heating method under different semi-solid temperatures (580, 595, 610 and 625 ℃) and holding times (5, 15, 30 and 60 min), and the influences of process parameters on microstructure evolution were investigated to obtain the grain coarsening mechanism and optimum semi-solid thixoforming process parameters. The results show that Mg-3Y-4Nd-1Ni-0.5Zr alloy structure changes from fine α-Mg grains to spherical particles after isothermal heating treatment, and the average grain size, liquid fraction and shape coefficient of Mg-3Y-4Nd-1Ni-0.5Zr alloy increase with the increasing of semi-solid temperature and holding time. When the semi-solid temperature is lower than 595 ℃ or the holding time is less than 30 min, the microstructure evolution of semi-solid microstructure is mainly dominated by grain growth, and coarsening merge mechanism plays a leading role. When the semi-solid temperature is higher than 610 ℃ or the holding time is more than 30 min, the liquid phase of the semi-solid microstructure increases, the solid particles become spheroidal, and the Ostwald ripening mechanism plays a dominant role. The optimal process parameters are the semi-solid temperature of 625 ℃ and the holding time of 15 min. Under the optimal process parameters, the average grain size, liquid fraction and shape coefficient of Mg-3Y-4Nd-1Ni-0.5Zr alloy are (60.9±3.1)μm, (31.2±1.4)% and (64.1±0.4)%, respectively.

基金项目:
四川省科技厅重点研发计划项目(2017GZ0399)
作者简介:
作者简介:张虹桃(1995-),男,硕士,助理工程师,E-mail:zht1547986876@126.com;通信作者:权高峰(1958-),男,博士,教授,E-mail:suhlhust@sina.com
参考文献:

[1]张磊, 彭志刚, 余金陵, . 非常规油气压裂球的研制及分析[J]. 石油与天然气化工, 2013, 42(2): 165-167.


Zhang L, Peng Z G, Yu J L, et al. Preparation and structure analysis of unconventional oil-gas fracturing ball[J]. Chemical Engineering of Oil & Gas, 2013, 42(2): 165-167.


[2]Lian Z H, Zhang Y, Zhao X, et al. Mechanical and mathematical models of multi-stage horizontal fracturing strings and their application[J]. Natural Gas Industry B, 2015, 2(2-3):185-191.


[3]Niu H Y, Deng K K, Nie K B, et al. Microstructure, mechanical properties and corrosion properties of Mg-4Zn-xNi alloys for degradable fracturing ball applications[J]. Journal of Alloys and Compounds, 2019, 787(30): 1290-1296.


[4]刘锋. 镁合金表面新型微弧氧化涂层制备及性能表征研究[D]. 北京:中国科学院金属研究所, 2012.


Liu F. Preparation and Characterization of a Novel Micro-arc Oxidation Coating on Magnesium Alloys[J]. Beijing:Institute of Metal Research, Chinese Academy of Sciences, 2012.


[5]Bhattacharyya J J, Wang F, McQuade P J, et al. Deformation and fracture behavior of Mg alloy, WE43, after various aging heat treatments[J]. Materials Science and Engineering: A, 2017, 705: 79-88.


[6]Xiang C C, Gupta N, Coelho P, et al. Effect of microstructure on tensile and compressive behavior of WE43 alloy in as cast and heat-treated conditions[J]. Materials Science and Engineering: A, 2018, 710: 74-85.


[7]Yu Z J, Chao X, Jian M, et al. Microstructure evolution and mechanical properties of as-extruded Mg-Gd-Y-Zr alloy with Zn and Nd additions[J]. Materials Science and Engineering:A, 2018, 713: 234-239.


[8]Tsai M Y, Chou M H, Kao C R. Interfacial reaction and the dominant diffusing species in Mg-Ni system[J]. Journal of Alloys and Compounds, 2009, 471(1-2): 90-92.


[9]Song G L, Atrens A. Corrosion mechanisms of magnesium alloys[J]. Advanced Engineering Materials, 2010, 1(1): 11-33.


[10]Oh S K, Kim M J, Eom K S, et al. Design of Mg-Ni alloys for fast hydrogen generation from seawater and their application in polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(10): 5296-5303.


[11]刘运楼, 李斌, 潘勇,. 分段压裂用可溶球的研制[J]. 天然气工业, 2016, 36(9):96-101.


Liu Y L, Li B, Pan Y, et al. Research and development of soluble ball for staged fracturing [J]. Natural Gas Industry, 2016, 36(9): 96-101.


[12]刘恩洋, 于思荣, 纪志康,. 漂珠/镁合金复合材料可溶压裂球的制备及组织性能研究[J]. 稀有金属, 2019, 43(8), 792-799.


Liu E Y, Yu S R, Ji Z K, et al. Preparationmicrostructure and properties of fly ash cenosphere /Mg alloy composites for degradable fracturing ball applications[J]. Chinese Journal of Rare Metals, 2019, 43(8): 792-799.


[13]Li Y K, Li L, Geng B Y, et al. Microstructure characteristics and strengthening mechanism of semisolid CuSn10P1 alloys[J]. Materials Characterization, 2021, 172: 1108-1119.


[14]Wang Q P, Li L, Zhou R F, et al. Rheological behavior of semisolid hypereutectic Al-Si alloys[J]. Journal of Materials Research, 2019, 34(12): 2105-2113.


[15]陈刚, 郑顺奇, 王岩, . 镁合金半固态浆料制备与成形技术研究进展[J]. 兵器材料科学与工程, 2018, 41(3): 116-120.


Chen G, Zheng S Q, Wang Y, et al. Research status of preparation and forming technology of semi-solid Mg alloy slurry[J]. Ordnance Material Science and Engineering, 2018, 41(3): 116-120.


[16]尹湘林, 杨弋涛, 邵玉鹏, . 铝合金半固态坯料感应加热过程的组织演变及控制[J]. 特种铸造及有色合金, 2009, 29(8): 717-822.


Yin X L, Yang Y T, Shao Y P, et al. Microstructural evolution and control of semi-solid aluminum alloy during electromagnetic induction reheating[J]. Special Casting & Nonferrous Alloys, 2009, 29(8): 717-823.


[17]Xu Y T, Guan T Y, Zhang Z F, et al. Semi-solid rheological squeeze casting process of ZL114A aluminum alloy thin-wall complex casting[J]. Materials Science Forum, 2020, 993: 248-253.


[18]Feng J K, Zhang D F, Hu H J, et al. Improved microstructures of AZ31 magnesium alloy by semi-solid extrusion[J]. Materials Science and Engineering:A, 2021, 800: 140204.


[19]Zhang L, Li Y L, Yu C T, et al. Effect of equal channel angular pressing on microstructure and mechanical properties of ZK60 alloy[J]. Journal of Physics: Conference Series, 2021, 1798: 012023.


[20]刘伟,张英波,李彬, .半固态等温处理Mg-Zn-Y合金微观组织演变[J]. 稀有金属材料与工程, 2015, 44(12): 3244-3247.


Liu W, Zhang Y B, Li B, et al. Microstructure evolution of Mg-Zn-Y alloys during semi-solid isothermal heat treatment[J]. Rare Metal Materials and Engineering, 2015, 44(12): 3244-3247.


[21]孙兵, 张英波, 权高峰, . AZ80镁合金半固态等温处理过程中的组织演变[J]. 稀有金属材料与工程, 2016, 452: 404-408.


Sun B, Zhang Y B, Quan G F, et al. Microstructure evolution of AZ80 magnesium alloy in semi-solid isothermal treatment process[J]. Rare Metal Materials and Engineering, 2016, 452: 404-408.


[22]Zhang H T, Fan L L, Zhou M Y, et al. Effects of semi-solid treatment by electro-magnetic induction on microstructure evolution and mechanical properties of the Mg-2.4Y-4Nd-0.5Zr-1Ni alloys[J]. Materials Research Express, 2020, 7(5): 056506.


[23]Li J Q, Zhang L, Dong X P, et al. Study on microstructure of semi-solid magnesium alloy manufactured by gas bubbles stirring[J]. Advanced Materials Research, 2010, 129-131: 728-734.


[24]黄晓锋, 张乔乔, 马亚杰, . Mg-6Zn-1Cu-0.3Mn镁合金的半固态组织演变[J]. 材料导报, 2019, 33(20): 3441-3447.


Huang X F, Zhang Q Q, Ma Y J, et al. Semi-solid microstructure evolution of Mg-6Zn-1Cu-0.3Mn magnesium alloy[J]. Materials Reports, 2019, 33(20): 3441-3447.


[25]Inoue A, Shibata T, Zhang T. Effect of additional elements on glass transition behavior and glass formation tendency of Zr-Al-Cu-Ni alloys[J]. Materials Transactions Jim, 2007, 36(12): 1420-1426.


[26]Hampp C, Ullmann B, Reifenrath J, et al. Research on the biocompatibility of the new magnesium alloy LANd442-An in vivo study in the rabbit tibia over 26 weeks[J]. Advanced Engineering Materials, 2012, 14(3): B28-B37.


[27]Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy[J]. Acta Materialia, 2014, 62(5): 141-155.


[28]孙浩, 周明扬, 屈晓妮, . 半固态等温处理与电磁感应加热AZ80-0.2Y镁合金组织的演变[J]. 中国有色金属学报, 2017, 27(10): 1989-1995.


Sun H, Zhou M Y, Qu X N, et al. Microstructure evolution of AZ80-0.2Y magnesium alloy processed by semi-solid isothermal and induction heat-treatment[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(10): 1989-1995.


[29]唐小玲, 尚淑珍, 路贵民, . 6061铝合金触变压缩数值模拟[J]. 塑性工程学报, 2011, 18(6): 26-30.


Tang X L, Shang S Z, Lu G M, et al. Finite element simulation for thixo-compression of Al 6061[J]. Journal of Plasticity Engineering, 2011, 18(6): 26-30.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9