网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
一体化刚性加强结构尺寸对超塑成形减薄率的影响
英文标题:Influence of intergrated rigid reinforcement structure dimension on thinning rate of superplastic forming
作者:王会东1 谢洪志1 吕伟2 付和国1 韩颖杰1 李明1 史吉鹏1 
单位:1.沈阳飞机工业(集团)有限公司 2.航空工业沈阳飞机设计研究所 
关键词:超塑成形 扩散连接 一体化刚性加强结构 几何尺寸 变形行为 减薄率 
分类号:V262.2
出版年,卷(期):页码:2023,48(5):61-66
摘要:

为了研究超塑成形/扩散连接过程中,一体化刚性加强结构的几何尺寸对构件整体减薄率的影响,通过CAE技术并基于超塑成形的技术特点,对一体化刚性加强结构的厚度、宽度对减薄率的作用进行了计算分析,优化了一体化刚性加强结构的几何尺寸,最后进行了验证件的试制验证。结果显示:降低一体化刚性加强结构的厚度,有助于抑制构件的过度减薄,而减小宽度,有助于提高构件的贴模度,优化得到的一体化梯度刚性加强结构在加工制造过程中成形稳定,未出现成形缺陷。验证件的试制结果表明,采用合理的一体化刚性加强结构尺寸,可以实现局部加强零件的精准成形,实测减薄率与计算结果一致,可以指导零件生产。

 In order to investigate the influence of the geometric dimensions of integrated rigid reinforcement structure on the overall thinning rate of components during superplastic forming and diffusion bonding process, based on the characteristics of superplastic forming technology, the effect of thickness and width of the integrated rigid reinforcement structure on the thinning rate was calculated and analyzed by CAE technology, and the geometric dimensions of the integrated rigid reinforced structure were optimized. Finally, the trial production verification of verification part was conducted. The results show that reducing the thickness of the intergrated rigid reinforcement structure helps to suppress the excessive thinning of component, while reducing the width helps to improve the degree of die fit for part. The optimized integrated gradient rigid reinforcement structure is stable in the manufacturing process, and there are no forming defects. The trial production results of verification parts indicate that the accurate forming of locally reinforced parts can be achieved by reasonable structural dimensions, and the measured thinning rate is consistent with the calculated results, which can guide the production of parts.

基金项目:
作者简介:
作者简介:王会东(1988-),男,学士,工程师,E-mail:260098181@qq.com;通信作者:史吉鹏(1984-),男,博士,高级工程师,E-mail:shi_jipeng@126.com
参考文献:

[1]韩颖杰, 付和国, 王会东, . 含预置板的双层钛合金超塑成形/扩散连接零件缺陷分析及工艺改进[J]. 塑性工程学报, 2020, 27(4): 41-47.


Han Y J, Fu H G, Wang H D, et al. Defects analysis and process improvement for double-layer SPF/DB structure parts of titanium alloy with pre-set panel[J]. Journal of Plasticity Engineering, 202027(4):41-47.


[2]周凌华, 沈中伟, 许涛. Ti55钛合金双层板的超塑成形/扩散连接数值模拟及工艺试验[J]. 锻压技术, 2022, 47(8): 76-82.


Zhou L H, Shen Z W, Xu T. Numerical simulation and process test on superplastic forming/diffusion bonding for Ti55 titanium alloy double-layer plate[J]. Forging & Stamping Technology, 2022, 47(8): 76-82.


[3]武永, 周贤军, 吴迪鹏, . TC31钛合金四层舵翼超塑成形/扩散连接工艺研究[J]. 航空制造技术,2021, 64(17): 34-40.


Wu Y, Zhou X J, Wu D P, et al. Superplastic forming and diffusion bonding process for four-sheet air rudder of TC31 titanium alloy[J]. Aeronautical Manufacturing Technology2021, 64(17): 34-40.


[4]吴迪鹏, 吴永, 周贤军, . TC4钛合金点阵/4层混合结构舵翼超塑成形/扩散连接工艺研究[J]. 塑性工程学报, 2022, 29(5): 92-97.


Wu D P, Wu Y, Zhou X J, et al. SPF/DB process of rudder wing lattice/four-sheet hybrid structure of TC4 titanium alloy[J]. Journal of Plasticity Engineering, 202229(5):92-97.


[5]王安阳, 王重阳, 卢振, . TiAl薄壁中空结构材料制备与成形一体化研究现状[J]. 精密成形工程,2022, 14(2): 66-73.Wang A Y, Wang C Y, Lu Z, et al. Research status of integration of preparation and forming of TiAl thin wall hollow structure materials[J]. Journal of Netshape Forming Engineering, 2022, 14(2): 66-73.


[6]李保永, 张铁军, 张凯锋, . 钛合金超塑成形/扩散连接四层结构表面沟槽控制方法研究[J]. 航空制造技术, 2020, 63(21): 63-67.


Li B Y, Zhang T J, Zhang K F, et al. Research on control method of surface groove of titanium alloy SPF/DB four-sheet structure[J]. Aeronautical Manufacturing Technology, 2020, 63(21): 63-67.


[7]李保永, 蒋少松. Ti2AlNb合金超塑性能及四层立筋结构超塑成形/扩散连接工艺[J]. 中国有色金属学报, 2020, 30(1): 103-111.


Li B Y, Jiang S S. Superplastic forming/diffusion bonding of Ti-22Al-27Nb hollow four-layer structure[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(1): 103-111.


[8]杨钦鑫, 童国权, 何泽洲. 钛合金二层板结构超塑成形/扩散连接试验研究[J]. 稀有金属, 2017, 41(12): 1305-1310.


Yang Q X, Tong G Q, He Z Z. Process of superplastic forming/diffusion bonding for two-sheet structure of titanium alloy[J]. Chinese Journal of Rate Metals, 2017, 41(12): 1305-1310.


[9]王珏, 王月林, 张晓巍, . 基于CAE的梯度增强刚性结构超塑成形/扩散连接工艺研究[J]. 塑性工程学报, 2020, 29(12): 41-46.


Wang J, Wang Y L, Zhang X W, et al. Research on superplastic forming/diffusion bonding process of gradient reinforced rigid structure based on CAE[J]. Journal of Plasticity Engineering, 2020, 29(12): 41-46.


[10]Mosleh A O, Mikhaylovskaya A V, Kotov A D, et al. Experimental, modelling and simulation of an approach for optimizing the superplastic forming Ti-6Al-4V titanium alloy[J]. Journal of Manufacturing Processes, 2019, 45:262-272.


[11]王珏, 张晓巍, 张英伟, . TA32钛合金双层结构零件超塑成形/扩散连接工艺[J]. 塑性工程学报, 2022, 29(3): 53-58.


Wang J, Zhang X W, Zhang Y W, et al. Superplastic forming and diffusion bonding technology of TA32 titanium alloy double-layer structure part[J]. Journal of Plasticity Engineering, 2022, 29(3): 53-58.


[12]李析桐, 王会东, 周忠智, . 基于有限元分析TC4筋包超塑成形工艺优化[J]. 兵器科学与工程, 2021, 44(5): 12-16.


Li X T, Wang H D, Zhou Z Z, et al. Optimization of superplastic forming process of TC4 panel rib based on finite element analysis[J].Ordnance Material Science and Engineering, 2021, 44(5): 12-16.


[13]王斌, 朱冬妹, 刘章光, . TA15钛合金四层板结构SPF/DB数值模拟及工艺研究[J]. 塑性工程学报, 2020, 27(6): 98-104.


Wang B, Zhu D M, Liu Z G, et al. Numerical simulation and process study of SPF/DB for four-sheet structure of TA15 titanium alloy[J]. Journal of Plasticity Engineering, 2020, 27(6): 98-104.


[14]赵毅, 陶华. 钛合金板塑成形/扩散连接成形因素影响的数值模拟[J]. 航空精密制造技术, 2007, 43(1): 41-43.


Zhao Y, Tao H. Numerical simulation of effect on SPF/DB of Ti alloy sheet[J]. Aeronautical Manufacturing Technology, 2007, 43(1): 41-43.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9