网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
航空发动机钣金件先进成形技术尺寸精度及性能控制
英文标题:Advanced forming technology on sheet metal parts in aero-engines
作者:朱宇1 张贺刚2 董红瑞3 李译成3 方虹懿3 李小强3 
单位:1.中国航空发动机研究院  2.航发智造(北京)科技有限公司  3.北京航空航天大学 机械工程及自动化学院 
关键词:航空发动机 钣金件 金属成形 成形装备 航空制造 
分类号:T-19;V19
出版年,卷(期):页码:2023,48(5):67-78
摘要:

 钣金件在航空发动机上应用广泛,随着先进航空发动机向高推重比、低油耗、长寿命、低成本方向发展,大量采用新材料、新型整体和轻量化复杂结构,对钣金件的成形技术提出了更高的要求和新的挑战。从概念、方法、装备、应用及发展水平等方面,系统地梳理和总结了高温合金、钛合金等关键金属材料钣金件的充液成形、热冲压成形等先进成形技术的国内外发展现状,分析了国内钣金件成形技术与装备等方面与国外相比的差距和发展需求。结果表明,国内应大力、持续推动航空发动机复杂钣金件先进成形技术工艺及装备的研发和投入,提升钣金件先进成形技术水平,建立健全的技术标准和质量体系,充分发挥市场效益和社会效率,实现钣金件成形技术及装备的自主可控。

 Sheet metal parts are widely used in aero-engines. With the development of advanced aero-engines in the direction of high thrust-to-weight ratio, low fuel consumption, long life and low cost, a large number of new materials, new integral and lightweight complex structures are used, and higher requirements and new challenges are put forward for sheet metal forming technology. Therefore, from the aspects of concept, method, equipment, application and development level, etc., the domestic and foreign development status of advanced forming technologies such as hydroforming and hot forming of key metal material sheet metal parts such as superalloy and titanium alloy were systematically sorted out and summarized, and the gap and development needs of domestic sheet metal forming technology and equipment were analyzed compared with foreign countries. The results show that China should continue to vigorously promote the research,development and investment of advanced forming process, equipment for complex sheet metal parts of aero-engines, improve the level of advanced forming technology for sheet metal parts, establish and improve technical standards and quality systems, give full play to market benefits and social efficiency, and realize the self-controllable forming technology and equipment of sheet metal parts.

基金项目:
国家科技重大专项(J2019-VII-0014-0154);中央高校基本科研业务费专项资金(YWF-22-L-504)
作者简介:
作者简介:朱宇(1981-),男,博士,高级工程师,E-mail:14526657@qq.com;通信作者:李小强(1979-),男,博士,教授,E-mail:littlestrongcn@163.com
参考文献:

[1]Desai B V, Desai K P, Raval H K. Die-less rapid prototyping process: Parametric investigations [J]. Procedia Materials Science, 2014, 6:666-673.


[2]李高峰. 板材数控双面渐进成形装备设计关键技术研究[D]. 北京:北京航空航天大学, 2019.


Li G F. Research on Key Technologies of CNC Double-sided Incremental Forming Equipment Design for Sheet Metal [D].BeijingBeihang University,2019.


[3]Nissan. B-roll: Dual-sided Dieless Forming[Z].https://global.nissannews.com/en/videos/video-02fc9f3583eed43f7ac1d7b3d 8056e73-dual-sided-dieless- forming-b-roll.


[4]Rwth Aachen University. Institute of Metal Forming-Research Group Sheet Metal Forming[Z].https://www.ibf.rwth-aachen.de/go/id/pepy/lidx/1.


[5]Gerhard Hirt, Markus Bambach, Wolfgang Bleck, et al. The development of incremental sheet forming from flexible forming to fully integrated production of sheet metal parts[A]. Christain Brecher. Advances in Production Technology[C]. Switzerland:Springer,2015.


[6]Kristoffy I. Metal forming with vibrated tools [J]. Journal of Engineering for Industry, 1969, 91 (4): 1168-1174.


[7]Koga N, Asaka M, Junlapen K. Deep-drawing and ironing of 1050 aluminum sheets loaded with vibration using NC servo press machine [J]. Journal of Japan Institute of Light Metals, 2007, 57(6): 240-244.


[8]Komatsu I, Murakami T. Practical Use of Servo Press [M]. Tokyo: Nikkan Kougyou Shinbunsha, 2009.


[9]Kim S WLee Y S. Investigations on the effect of ultrasonic vibration in cylindrical cup drawing processes[J]. Key Engineering Material2014622-6231152-1157.


[10]高铁军,刘小军,于鲲,等. 超声振动对TC1钛合金板材拉伸性能的影响[J]. 稀有金属材料与工程,2019481):286-292.


Gao T JLiu X JYu Ket al. Effects of ultrasonic vibration on tensile properties of TC1 titanium alloy sheet[J].Rare Metal Materials and Engineering2019481):286-292.


[11]韩光超, 刘军, 温晓宁, . 基于不同振动模式的超声辅助拉深精密成形工艺 [J]. 锻压技术, 2021, 46 (9): 118-123.


Han G C, Liu J, Wen X N, et al. Precision forming process by ultrasonic assisted deep drawing based on different vibration modes[J]. Forging & Stamping Technology, 2021, 46 (9): 118-123.


[12]孟德安,朱成成,董渊哲,等. 振动辅助塑性成形工艺及机理的研究进展[J]. 锻压技术,2022,47(4):1-13.


Meng D AZhu C CDong Y Zet al. Research progress on vibration-assisted plastic forming process and mechanism[J]. Forging & Stamping Technology2022,47(4):1-13.


[13]Kriechenbauer S, Mauermann R, Muller P. Deep drawing with superimposed low-frequency vibrations on servo-screw presses [J].Procedia Engineering, 2014, 81: 905-913.


[14]Dunkes Firmenportrait mit Prsentation der Servo-spindelpresse zum Tiefziehen von Blechen[Z].https://www.youtube.com/watch?v=d2FRH6Jo8JQ.


[15]中国机械工程学会塑性工程分会,郭斌,郎利辉. 锻压手册:第2 冲压[M].4.北京:机械工业出版社,2021.


China Society for Technology of plasticity, CMESGuo BLang L H. Handbook of ForgingVolume 2 Stamping[M]. 4th Edition.BeijingChina Machine Press2021.


[16]ACB. Elastomer Matrix Forming Press[Z]. https://www.acb-ps.com/en/elastomer-matrix-forming-press-emc.


[17]Avure Technologies. Avure FlexformTM Sheet Metal Forming Presses[Z]. https://pdf.directindustry.com/pdf/avure-technologies/avure-flexform-sheet-metal-forming-presses/16238-127483.html.


[18]Quintus Technologies. High-pressure Warm Forming Forms Aerospace-grade Titanium[Z]. https://www.thefabricator.com/stampingjournal/article/stamping/high-pressure-warm-forming-forms- aerospace-grade-titanium.


[19]中国工程科技知识中心.国产首台7.7万吨橡皮囊液压成形机[Z]. https://kgo.ckcest.cn/kgo/detail/1006/dw_achieve- ment/S1nUAaYDSFwW3UwT%252FvSUzQ%253D%253D. html.


China Knowledge Center for Engineering Science and Technology. The First Domestically Produced 77000 t Rubber Bag Hydraulic Forming Machine[Z].https://kgo.ckcest.cn/kgo/detail/1006/dw_achievement/S1nUAaYDSFwW3UwT%252FvSUzQ%253D%253D. html.


[20]GB/T 28273—2012,管、板液压成形工艺分类[S].


GB/T 28273—2012Process classification of tube and sheet hydroforming[S].


[21]苑世剑,刘伟,徐永超.板材液压成形技术与装备新进展[J].机械工程学报,2015,51(8):20-28.


Yuan S JLiu WXu Y C. New development on technology and equipment of sheet hydroforming[J].Journal of Mechanical Engineering201551 (8): 20-28.


[22]李奎,刘波,邱超斌,等. 环形蒙皮零件的被动式充液成形技术[J].锻压技术,2022, 47 (3): 103-108.


Li KLiu BQiu C Bet al. Passive hydroforming technology for ring-shaped skin parts[J].Forging Stamping Technology202247 (3):103-108.


[23]Exotic Metals Forming. Our Products[Z].https://www.exoticmetals.com/catalog/our-products.


[24]Leacock A G. A novel process for the manufacture of extended laminar flow lipskins[J].Key Engineering Materials,2013, 549: 3-12.


[25]李小强,李东升,杜宝瑞. 国外航空钣金专用制造技术与装备发展[J].航空制造技术,2012(15): 32-37.


Li X QLi D SDu B R. Manufacturing technology and equipments for aircraft sheet metal [J].Aeronautical Manufacturing Technology2012(15): 32-37.


[26]史文祥, 章文亮, 陈明和, . TB8钛合金复杂外形桨叶前缘蒙皮多步热成形工艺研究[J]. 航空制造技术, 2021, 64(8): 84-91.


Shi W X, Zhang W L, Chen M H, et al. Research on multi-step hot forming process of TB8 titanium alloy leading edge skin of complex shape blade[J]. Aeronautical Manufacturing Technology, 2021, 64(8): 84-91.


[27]刘斐. TC1钛合金薄板深拉热成形失效分析与对策研究[D].湘潭:湘潭大学,2004.


Liu F. The Failure Analyses and Countermeasure Study for Deep-draw Thermal Forming of TC1 Ti Alloy Thin Plate[D]. XiangtanXiangtan University,2004.


[28]许诗怡. 钛合金热成形高温换模与模具连接技术研究[D]. 沈阳:沈阳航空航天大学, 2020.


Xu S Y. Research on High Temperature Die Change and Die Connection Technology for Titanium Alloy Hot Forming[D]. ShenyangShenyang Aerospace University, 2020.


[29]许诗怡,邓忠林,刘春. 热成形高温换模系统方案设计与仿真验证[J].现代制造技术与装备,2021,2:74-7685.


Xu S YDeng Z LLiu C. Scheme design and simulation verification of high temperature die changing system for hot forming[J]. Modern Manufacturing Technology and Equipment, 2021,2:74-7685.


[30]Daniel SandersPaul EdwardsGlenn Grantet al. Superplastically formed friction stir welded tailored aluminum and titanium blanks for aerospace applications[J]. Journal of Materials Engineering and Performance, 2010, 19(4): 515-520.


[31]BBC Documentary Rolls Royce How to Build a Jumbo Jet Engine[Z]. https://www.youtube.com/watch?v=Ho7j8OLV1fk.


[32]Rolls-Royce. Making a Fan Blade[Z].https://www. aerocontact.com/en/videos/12914-rolls-royce-making-a-fan-blade.


[33]Hefti L D. Fine-grain titanium 6AI-4V for superplastic forming and diffusion bonding of aerospace products[J]. JOM, 2010, 62: 42-45.


[34]Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures[J]. Nature Reviews Materials, 2016, 1:16019.


[35]席兵,巨建辉,舒滢,.钛合金超塑性的影响因素研究 [J].热加工工艺, 2013, 42(10): 100-102.


Xi BJu J HShu Yet al. Influence factor on superplastic of titanium alloy [J]. Hot Working Technology, 2013, 42(10): 100-102.


[36]曾立英, 赵永庆, 李丹柯, . 超塑性钛合金的研究进展 [J].金属热处理, 2005,(5): 28-33.


Zeng L YZhao Y QLi D Ket al. Research progress on superplastic titanium alloys [J]. Heat Treatment of Metals, 2005,(5): 28-33.


[37]Perevezentsev V N, Chuvil′deev V N, Larin S A. Deformation micromechanisms and superplastic flow rheology in a wide strain rate range[J]. Materials Science Forum, 1994, 170-172(5): 613-620.


[38]Salishchev G A, Galeyev R M, Valiakhmetov O R, et al. Development of Ti-6Al-4V sheet with low temperature superplastic properties[J]. Journal of Materials Processing Technology, 2001, 116 (2-3): 265-268.


[39]刘钢, 王克环, 何祝斌,. 钛合金钣金构件高压气胀成型技术研究进展[J]. 军民两用技术与产品, 2013,(6):25-28.


Liu GWang K HHe Z Bet al. Research progress of high pressure gas bulging forming technology for titanium alloy sheet metal components[J].  Dual Use Technologies & Products, 2013,(6):25-28.


[40]Dykstra BPfaffmann G D Wu X. Hot metal gas forming-The next generation process for manufacturing vehicle structure components[A]. Proceedings of International Body Engineering Conference & Exposition[C].SAE,1999.


[41]Dykstra B. Hot metal gas forming for manufacturing vehicle structural components[J]. Metal Forming,2001, 35: 50-52.


[42]Liu G, Wang J L, Dang K X, et al. High pressure pneumatic forming of Ti-3Al-2.5V titanium tubes in a square cross-sectional die[J]. Materials, 2014, 7(8):5992-6009.


[43]Liu G,Wu Y,Wang D J,et al.Effect of feeding length on deforming behavior of Ti-3Al-2.5V tubular components prepared by tube gas forming at elevated temperature[J].The International Journal of Advanced Manufacturing Technology,2015,811809-1816.


[44]Liu G, Wang J L,Dang K X,et al. Effects of flow stress behaviour, pressure loading path and temperature variation on high-pressure pneumatic forming of Ti-3Al-2.5V tubes[J]. The International Journal of Advanced Manufacturing Technology, 201685:869-879.


[45]刘钢, 武永, 王建珑,等. 钛合金管件高压气胀成形工艺研究进展[J]. 精密成形工程, 2016(5):35-40.


Liu G, Wu Y, Wang J L, et al. Research progress of high pressure gas forming for titanium alloy tubular components[J]. Journal of Netshape Forming Engineering, 2016(5):35-40.


[46]Murata M, Kuboki K. CNC tube forming method for manufacturing flexibly and 3-Dimensionally bent tubes[A]. 60 Excellent Inventions in Metal Forming[C]. New York: Springer Verlag Berlin Heidelberg, 2015.


[47]Murata M, Mochizuki T. Effect of approach length on square tube by MOS bending[A]. Proceedings of Aluminum Alloys: Their Physical and Mechanical Properties[C].Toyohashi:The Japan Institute of Light Metals,1997.


[48]陶杰,熊昊,万柏方,.三维自由弯曲成形装备及其关键技术[J].精密成形工程,201810 (4): 1-13.


Tao J,Xiong H,Wan B F,et al.3D free-bending forming equipment and key technology[J].Journal of Netshape Forming Engineering,2018,10(4):1-13.


[49]马燕楠. 金属管材三维自由弯曲成形研究[D].南京:南京航空航天大学,2018.


Ma Y N. Research on Three-dimensional Free Bending of Metal Tube [D]. NanjingNanjing University of Aeronautics and Astronautics,2018.


[50]郭训忠,马燕楠,徐勇,.三维自由弯曲成形技术及在航空制造业中的潜在应用[J].航空制造技术,2016(23):16-24.


Guo Z X, Ma Y N, Xu Y, et al. State-of-the-arts in 3D free bending technology and the future application in aviation manufacture[J]. Aeronautical Manufacturing Technology, 2016(23):16-24.


[51]Li P F, Wang L Y, Li M Z. Flexible-bending of profiles and tubes of continuous varying radii[J]. The International Journal of Advanced Manufacturing Technology, 2017,88: 1669-1675.


[52]Li P F, Wang L Y, Li M Z. Flexible-bending of profiles with asymmetric cross-section and elimination of side bending defect[J]. International Journal of Advanced Manufacturing Technology, 2016, 87: 2853-2859.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9