网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
钛合金薄壁弯管热气胀工艺变形行为
英文标题:Deformation behavior of titanium alloy thin-walled bent tube during hot gas bulging process
作者:付坤宁1 杨小克2 杨波3 郑凯伦4 
单位:1.哈尔滨工业大学 材料科学与工程学院  2.中国航天科工三院 航天海鹰(哈尔滨)钛业有限公司  3.中国航发沈阳黎明航空发动机有限责任公司 4.大连理工大学 机械工程学院 
关键词:钛合金管材 热气胀成形 应变硬化 应变速率硬化 变形均匀性 
分类号:TG394
出版年,卷(期):页码:2023,48(5):123-129
摘要:

 针对TC4钛合金薄壁弯管弯曲过程中的内侧起皱、外侧开裂、横截面畸变和弯曲回弹等成形缺陷,提出了钛合金薄壁弯管热气胀成形工艺,解决了以上成形缺陷,并通过调控工艺参数控制TC4钛合金的应变硬化与应变速率硬化的协同作用,提升了薄壁弯管的壁厚均匀性。在此基础上,开展了TC4钛合金薄壁弯管的热气胀成形实验。最终成形出满足产品使用要求的Φ206 mm×1.5 mm×R495 mm的TC4钛合金薄壁弯管,最大不圆度仅为0.25%,最大减薄率为16.88%。结果表明:在TC4钛合金薄壁弯管热气胀成形过程中,控制成形温度及应变速率等主要工艺参数,可以提高薄壁弯管的成形精度和壁厚均匀性,显著改善成形弯管的产品质量。

 For the forming defects of inner wrinkling, outer cracking, sectional distortion and bending springback of TC4 titanium alloy thin-walled bent tube during bending process, the hot gas bulging process of titanium alloy thin-walled bent tube was proposed and the above forming defects were solved. The wall thickness uniformity of thin-walled bent tube was improved by adjusting the process parameters to control the cooperative regulation of strain and strain rate hardening for TC4 titanium alloy. Based on the above theory, the hot gas bulging experiment of TC4 titanium alloy thin-walled bent tube was carried out. Finally, the TC4 titanium alloy thin-walled bent tube of Φ206 mm×1.5 mm×R495 mm which met the product use requirements was formed with the maximum out-of-roundness of 0.25% and the maximum thinning rate of 16.88%. The results show that during the hot gas bulging process of TC4 titanium alloy thin-walled bent tube, the forming accuracy and wall thickness uniformity of thin-walled bent tube can be improved by controlling the main process parameters such as forming temperature and strain rate to significantly improve the product quality of formed bent tube.

基金项目:
国家自然科学基金资助项目(5200052525)
作者简介:
作者简介:付坤宁(1991-),男,博士研究生,E-mail:19b909110@stu.hit.edu.cn;通信作者:郑凯伦(1988-),男,博士,教授,E-mail:zhengkailun@dlut.edu.cn
参考文献:

[1]Williams J C, Boyer R R. Opportunities and issues in the application of titanium alloys for aerospace components [J]. Metals, 2020, 10(6): 705. 


[2]Zhu L, Li N, Childs P R N. Light-weighting in aerospace component and system design [J]. Propulsion and Power Research, 2018, 7(2): 103-119. 

[3]Wang K H, Wang L L, Zheng K L, et al. High-efficiency forming processes for complex thin-walled titanium alloys components: State-of-the-art and perspectives [J]. International Journal of Extreme Manufacturing, 2020, 2(3): 032001. 

[4]Song H W, Xie W L, Zhang S H, et al. Granular media filler assisted push bending method of thin-walled tubes with small bending radius [J]. International Journal of Mechanical Sciences, 2021, 198: 106365.

[5]Hu L, Teng B G, Yuan S J. Effect of internal pressure on hydro bending of double-layered tube [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(10): 1717-1726. 

[6]Wang L, Wang Z L, Zhang S Y, et al. Springback prediction model of Ti-6Al-4V tube warm bending based on modified JC model considering variable temperature field [J]. Materials Science and Engineering, 2022,1270(1):012048.

[7]Wang K H, Liu G, Zhao J, et al. Experimental and modelling study of an approach to enhance gas bulging formability of TA15 titanium alloy tube based on dynamic recrystallization [J]. Journal of Materials Processing Technology, 2018, 259: 387-396. 

[8]Zhou W B, Lin J G, Balint D S, et al. Clarification of the effect of temperature and strain rate on workpiece deformation behaviour in metal forming processes [J]. International Journal of Machine Tools and Manufacture, 2021, 171: 103815. 

[9]Alabort E, Kontis P, Barba D, et al. On the mechanisms of superplasticity in Ti-6Al-4V [J]. Acta Materialia, 2016, 105: 449-463.

[10]丁嘉健,刘家和,杨展铭,等. TC4钛合金板材高温热拉伸性能的研究 [J]. 科技创新与应用,2019, 2045(11):41-45.

Ding J J, Liu J H, Yang Z M, et al. Study of high temperature tensile properties of TC4 titanium alloy sheets [J]. Technology Innovation and Application, 2019, 2045(11):41-45.

[11]Min J, Stoughton T B, Carsley J E, et al. Compensation for process-dependent effects in the determination of localized necking limits[J]. International Journal of Mechanical Sciences, 2016, 117: 115-134. 

[12]Hill R. On discontinuous plastic states, with special reference to localized necking in thin sheets [J]. Journal of the Mechanics and Physics of Solids, 1952, 1(1):19-30.

[13]Hart E W. Theory of the tensile test[J]. Acta Metallurgica, 1967, 15(2):351-355.

[14]Mentella A, Strano M. Rotary draw bending of small diameter copper tubes: Predicting the quality of the cross-section [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(2): 267-278.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9