网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
不锈钢无缝管无中间退火连续环辊旋轧成形工艺
英文标题:Continuous ring-roller spinning process on stainless steel seamless tube without intermediate annealing
作者:许镱巍1 李绍禄1 赵军2 赵宁1 赵春江1 3 
单位:1.太原科技大学 机械工程学院 2.太原科技大学 信息科学与技术学院  3.山西师范大学现代文理学院转设筹备处 
关键词:环辊旋轧成形工艺 不锈钢无缝管 应力三轴度 微观组织 应力状态 
分类号:TG335.71
出版年,卷(期):页码:2023,48(5):137-146
摘要:

 提出了一种环辊旋轧成形新工艺,其存在变形区应力三轴度小于断裂截止值即η<-1/3的平面压缩剪切应力状态,探究了这种应力状态在管材环辊旋轧过程中对塑性变形的影响规律。采用有限元和材料表征相结合的方法,分别验证了变形区应力状态分布和基于此应力状态的微观组织演化特征。采用自主设计加工的回转式环辊旋轧机,对57 mm×3 mm的304奥氏体不锈钢无缝管进行减壁加工,经过5道次无中间退火连续环辊旋轧加工后,得到最小壁厚为0.35 mm的不锈钢无缝管。对加工后的各道次管材试样的形貌特征、材料性能和微观结构进行表征,结果表明,成形后管材壁厚均匀度好,马氏体相的体积分数增长至35%,达到峰值,在累积变形量达到1.8 mm时晶粒尺寸达到200 nm并保持稳定,后续的塑性变形过程通过晶粒拉伸断裂和晶界强化增塑效应实现。

  A new process of ring-roller spinning was proposed, which has a plane compressive shear stress state where the stress triaxiality in the deformation zone was less than the fracture cut-off value,namely, η<-1/3, and the influence laws of this stress state on the plastic deformation during the ring-roller spinning process for tube was investigated. Then, the stress state distribution in the deformation zone and the microstructure evolution characteristics based on this stress state were verified by a combination of finite element and material characterization method, and the wall-reducing processing of 304 austenitic stainless steel seamless  tube with the size of 57 mm×3 mm was carried out by a rotary ring-roller spinning machine of independent design and processing. Furthermore, the stainless steel seamless tube with the minimum wall thickness of 0.35 mm were obtained after five passes of continuous ring-rolling spinning process without intermediate annealing, and the morphological characteristics, material properties and microstructure of the processed tube specimens were characterized. The results show that after forming the wall thickness uniformity of tube is good, the volume fraction of martensite phase increases to 35%, and reaches the peak value. When the cumulative deformation amount reaches 1.8 mm, the grain size reaches 200 nm and remains stable. The subsequent plastic deformation process is achieved through grain tensile fracture and grain boundary strengthening plasticizing effects.

基金项目:
国家自然科学基金面上项目(52275358)
作者简介:
作者简介:许镱巍(1995-),男,博士研究生,E-mail:xuyiweiedu@163.com;通信作者:赵春江(1975-),男,博士,教授,E-mail:zhaochj75@163.com
参考文献:

[1]Sivanandini M, Dhami S S, Pabla B S. Flow forming of tubes-A review[J]. International Journal of Scientific & Engineering Research,2012,3(5):587-597.


[2]Xu W C, Wu H, Ma H, et al. Damage evolution and ductile fracture prediction during tube spinning of titanium alloy[J]. International Journal of Mechanical Science,2018,135: 226-239.

[3]Mohebbi M S, Akbarzadeh A. Experimental study and FEM analysis of redundant strains in flow forming of tubes[J]. Journal of Materials Processing Technology,2010,210(2):389-395.

[4]Xu W C, Zhao X K, Ma H, et al. Influence of roller distribution modes on spinning force during tube spinning[J]. International Journal of Mechanical Sciences, 2016, 113:10-25.

[5]Olson G B, Cohen M. Kinetics of strain-induced martensitic nucleation[J]. Metallurgical Transactions A, 1975, 6(4):791-795.

[6]Stringfellow R G, Park D M, Olson G B. A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels[J]. Acta Metallurgica Materialia,1992,40(7):1703-1716.

[7]Beese A M, Mohr D. Effect of stress triaxiality and Lode angle on the kinetics of strain-induced austenite-to-martensite transformation[J]. Acta Materialia, 2011, 59(7):2589-2600.

[8]Santacreu P O, Glez J C, Chinouilh G, et al. Behaviour model of austenitic stainless steels for automotive structural parts[J]. Steel Research International, 2006,77:686-691.

[9]Hwigeon Kim, Jinwoo Lee, Frédéric Barlat, et al. Experiment and modeling to investigate the effect of stress state, strain and temperature on martensitic phase transformation in TRIP-assisted steel[J]. Acta Materialia, 2015, 97:435-444.

[10]Mansourinejad M, Ketabchi M. Modification of Olson-Cohen model for predicting stress-state dependency of martensitic transformation[J]. Materials Science and Technology, 2017,33(16):1948-1954. 

[11]Polatidis E, Haidemenopoulos G N, Krizan D, et al. The effect of stress triaxiality on the phase transformation in transformation induced plasticity steels: Experimental investigation and modelling the transformation kinetics[J]. Materials Science and Engineering:A,2021,800:140321.

[12]Xu Y W, Li W Z, Tian W, et al. Microstructural evolution of external cold extrusion spinning 304 stainless steel with cumulative large deformation in multiple passes[J]. The International Journal of Advanced Manufacturing Technology, 2022, 123(3):1009-1024.

[13]Nahshon K, Hutchinson J W. Modification of the Gurson model for shear failure[J]. European Journal of Mechanics-A/Solids, 2008, 27(1):1-17.

[14]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1:Method of test at room temperature[S].

[15]GB/T 3639—2021,冷拔或冷轧精密无缝钢管[S].

GB/T 3639—2021, Seamless cold-drawn or cold-rolled steel tubes for precision[S].

[16]Huang H W, Wang Z B, Lu J, et al. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer[J]. Acta Materialia, 2015, 87:150-160. 

[17]Das A, Chakraborti P C, Tarafder S, et al. Analysis of deformation induced martensitic transformation in stainless steels[J]. Materials Science Technology,2011, 27(1):366-370.

[18]Lewis M H, Hattersley B. Precipitation of M23C6 in austenitic steels[J]. Acta Metallurgica, 1965, 13(11):1159-1168.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9