[1]Sivanandini M, Dhami S S, Pabla B S. Flow forming of tubes-A review[J]. International Journal of Scientific & Engineering Research,2012,3(5):587-597.
[2]Xu W C, Wu H, Ma H, et al. Damage evolution and ductile fracture prediction during tube spinning of titanium alloy[J]. International Journal of Mechanical Science,2018,135: 226-239.
[3]Mohebbi M S, Akbarzadeh A. Experimental study and FEM analysis of redundant strains in flow forming of tubes[J]. Journal of Materials Processing Technology,2010,210(2):389-395.
[4]Xu W C, Zhao X K, Ma H, et al. Influence of roller distribution modes on spinning force during tube spinning[J]. International Journal of Mechanical Sciences, 2016, 113:10-25.
[5]Olson G B, Cohen M. Kinetics of strain-induced martensitic nucleation[J]. Metallurgical Transactions A, 1975, 6(4):791-795.
[6]Stringfellow R G, Park D M, Olson G B. A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels[J]. Acta Metallurgica Materialia,1992,40(7):1703-1716.
[7]Beese A M, Mohr D. Effect of stress triaxiality and Lode angle on the kinetics of strain-induced austenite-to-martensite transformation[J]. Acta Materialia, 2011, 59(7):2589-2600.
[8]Santacreu P O, Glez J C, Chinouilh G, et al. Behaviour model of austenitic stainless steels for automotive structural parts[J]. Steel Research International, 2006,77:686-691.
[9]Hwigeon Kim, Jinwoo Lee, Frédéric Barlat, et al. Experiment and modeling to investigate the effect of stress state, strain and temperature on martensitic phase transformation in TRIP-assisted steel[J]. Acta Materialia, 2015, 97:435-444.
[10]Mansourinejad M, Ketabchi M. Modification of Olson-Cohen model for predicting stress-state dependency of martensitic transformation[J]. Materials Science and Technology, 2017,33(16):1948-1954.
[11]Polatidis E, Haidemenopoulos G N, Krizan D, et al. The effect of stress triaxiality on the phase transformation in transformation induced plasticity steels: Experimental investigation and modelling the transformation kinetics[J]. Materials Science and Engineering:A,2021,800:140321.
[12]Xu Y W, Li W Z, Tian W, et al. Microstructural evolution of external cold extrusion spinning 304 stainless steel with cumulative large deformation in multiple passes[J]. The International Journal of Advanced Manufacturing Technology, 2022, 123(3):1009-1024.
[13]Nahshon K, Hutchinson J W. Modification of the Gurson model for shear failure[J]. European Journal of Mechanics-A/Solids, 2008, 27(1):1-17.
[14]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1:Method of test at room temperature[S].
[15]GB/T 3639—2021,冷拔或冷轧精密无缝钢管[S].
GB/T 3639—2021, Seamless cold-drawn or cold-rolled steel tubes for precision[S].
[16]Huang H W, Wang Z B, Lu J, et al. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer[J]. Acta Materialia, 2015, 87:150-160.
[17]Das A, Chakraborti P C, Tarafder S, et al. Analysis of deformation induced martensitic transformation in stainless steels[J]. Materials Science Technology,2011, 27(1):366-370.
[18]Lewis M H, Hattersley B. Precipitation of M23C6 in austenitic steels[J]. Acta Metallurgica, 1965, 13(11):1159-1168.
|