[1]Banhart J. Manufacture, characterisation and application of cellular metals and metal foams[J]. Progress in Materials Science, 2001, 46(6): 559-632.
[2]Kim T, Hodson H P, Lu T J. Fluid-flow and endwall heat-transfer characteristics of an ultralight lattice-frame material[J]. International Journal of Heat and Mass Transfer, 2004, 47(6-7): 1129-1140.
[3]Lu T J, Hess A, Ashby M. Sound absorption in metallic foams[J]. Journal of Applied Physics, 1999, 85(11): 7528-7539.
[4]Xue Z, Hutchinson J W. Preliminary assessment of sandwich plates subject to blast loads[J]. International Journal of Mechanical Sciences, 2003, 45(4): 687-705.
[5]Wadley H N G. Multifunctional periodic cellular metals[J]. Philosophical Transactions, 2006, 364(1838): 31-68.
[6]Wieding J, Jonitz A, Bader R. The effect of structural design on mechanical properties and cellular response of additive manufactured titanium scaffolds [J]. Materials, 2012, 5(8): 1336-1347.
[7]Kooistra G. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium[J]. Acta Materialia, 2004, 52(14): 4229-4237.
图6仿真及实验结果对比
(a) 表面凹槽轮廓(b) 筋条轮廓(c) 筋条减薄率(d) 面压缩曲线
Fig. 6Comparison of simulation and experimental results
(a) Outline of groove on surface (b) Outline of ribs (c)Thinning rate for ribs (d) Surface compression curve
[8]Tan Z L, Bai L S, Bai B Z, et al. Fabrication of lattice truss structures by novel super-plastic forming and diffusion bonding process in a titanium alloy[J]. Materials & Design, 2016, 92: 724-730.
[9]Niu T, Jiang B, Zhang N, et al. Microstructure and mechanical properties of Ti-Ti2AlNb interface[J]. Composites and Advanced Materials, 2021, 30: 2092971X-2633366X.
[10]Du Z H, Ma S B, Han G Q, et al. The parameter optimization and mechanical property of the honeycomb structure for Ti2AlNb based alloy[J]. Journal of Manufacturing Processes, 2021, 65: 206-213.
[11]Xu L, Ruan Q C, Shen Q Y, et al. Optimization design of lattice structures in internal cooling channel with variable aspect Ratio of gas turbine blade[J]. Energies (Basel), 2021, 14(13): 3954: 1-27.
[12]Wu Y, Wu D P, Ma J, et al. A physically based constitutive model of Ti-6Al-4V and application in the SPF/DB process for a pyramid lattice sandwich panel[J]. Archives of Civil and Mechanical Engineering, 2021, 21(106):1-17.
[13]Li W X, Sun F F, Wang P, et al. A novel carbon fiber reinforced lattice truss sandwich cylinder: Fabrication and experiments[J]. Composites Part A: Applied Science and Manufacturing, 2016, 81: 313-322.
[14]Siong Tok D K, Shi Y R, Tian Y T, et al. Factorized f-step radial basis function model for model predictive control[J]. Neurocomputing, 2017, 239: 102-112.
[15]Jeong S, Myrayama M, Yamamoto K. Efficient optimization design method using Kriging model[J]. Journal of Aircraft, 2005, 42(2): 413-420.
[16]Cai S P, Zhang P, Dai W X, et al. Multi-objective optimization for designing metallic corrugated core sandwich panels under air blast loading[J]. The Journal of Sandwich Structures and Materials, 2021, 23(4): 1192-1220.
[17]Du D H, He E M, Li F, et al. Using the hierarchical Kriging model to optimize the structural dynamics of rocket engines[J]. Aerospace Science and Technology, 2020, 107(4): 106248.
[18]Niu X Q, Xu F X, Zou Z. Bionic inspired honeycomb structures and multi-objective optimization for variable graded layers[J]. The Journal of Sandwich Structures and Materials, 2023, 25(2): 215-231.
[19]吴迪鹏,武永,陈明和,等.TC31钛合金板材高温流变行为及组织演变研究[J].稀有金属材料与工程,2019,48(12):3901-3910.
Wu D P, Wu Y, Chen M H, et al. High temperature flow behavior and microstructure evolution of TC31 Titanium alloy sheets[J]. Rare Metal Materials and Engineering, 2019, 48(12): 3901-3910.
[20]Liu Z Q, Wang X S, Jiao X Y, et al. Prediction of microstructure evolution during hot gas forming of Ti2AlNb-based alloy tubular component with square cross-section[J]. Procedia Manufacturing, 2018, 15: 1156-1163.
[21]GB/T 1453—2022, 夹层结构或芯子平压性能试验方法[S].
GB/T 1453—2022, Test method for flatwise compression properties of sandwich constructions or cores[S].
|