网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
钛合金Kagome点阵SPF/DB成形工艺及结构优化
英文标题:SPF/DB forming process and structural optimization on titanium alloy Kagome lattice
作者:武永1 2 吴迪鹏1 2 陈明和1 
单位:1. 南京航空航天大学 机电学院  2. 南京航空航天大学 航空航天结构力学与控制全国重点实验室 
关键词:TC31钛合金 点阵结构 超塑成形/扩散连接 表面凹陷 面抗压强度 
分类号:TG302
出版年,卷(期):页码:2023,48(5):162-167
摘要:

 超塑成形/扩散连接工艺(SPF/DB)可成形钛合金复杂曲面变厚度混合点阵结构,但因非均匀塑性变形会导致点阵内筋壁厚不均,对此类点阵结构的设计优化属于典型的多设计变量的高度非线性问题。将Kriging响应面模型和遗传算法引入到SPF/DB工艺制备的Kagome点阵结构优化设计中,并基于SPF/DB制造和面压缩性能的有限元仿真结果,构建了Kriging响应面,获得了结构参数对表面凹陷深度和面抗压强度的影响规律,采用遗传算法获得优化后的结构参数,并进行了实验验证。采用厚度为0.8 mm的芯板和1.2 mm的面板,利用SPF/DB工艺制备了Kagome点阵结构,发现在筋条与焊接点的过渡圆角处产生集中变形,最大减薄率为37.8%,面抗压强度为4.36 MPa,证明了结构参数的有效性。

 The mixed lattice structures with complex curved surfaces and variable thickness of titanium alloy can be formed by superplastic forming/diffusion bonding (SPF/DB) process. But due to non-uniform plastic deformation, the wall thickness of ribs in the lattice is uneven, and the design optimization of such lattice structures is a typical highly nonlinear problem with multiple design variables. Therefore, the Kriging response surface model and genetic algorithm were introduced into the optimal design of the Kagome lattice structure prepared by SPF/DB process, and based on the finite element simulation results of SPF/DB manufacturing and surface compression performance, the Kriging response surface was constructed. Then, the influence laws of the structural parameters on the surface depression depth and the surface compressive strength were obtained, and the optimized structural parameters were obtained by genetic algorithm for experimental verification. The results show that for the core plate with thickness of 0.8 mm and the panel with thickness of 1.2 mm, in the Kagome lattice structure prepared by SPF/DB process, it is found that concentrated deformation occurs at the transition fillet between rib and welding point, and the maximum thinning rate is 37.8% and the surface compressive strength is 4.36 MPa, demonstrating the validity of the structural parameters.

基金项目:
国家自然科学基金资助项目(51805256);中央高校基本科研项目(56XAC21017);国家博士后基金资助项目(2020M670792)
作者简介:
作者简介:武永(1986-),男,工学博士,副教授,E-mail:wuyong@nuaa.edu.cn
参考文献:

[1]Banhart J. Manufacture, characterisation and application of cellular metals and metal foams[J]. Progress in Materials Science, 2001, 46(6): 559-632.


[2]Kim T, Hodson H P, Lu T J. Fluid-flow and endwall heat-transfer characteristics of an ultralight lattice-frame material[J]. International Journal of Heat and Mass Transfer, 2004, 47(6-7): 1129-1140.

[3]Lu T J, Hess A, Ashby M. Sound absorption in metallic foams[J]. Journal of Applied Physics, 1999, 85(11): 7528-7539.

[4]Xue Z, Hutchinson J W. Preliminary assessment of sandwich plates subject to blast loads[J]. International Journal of Mechanical Sciences, 2003, 45(4): 687-705.

[5]Wadley H N G. Multifunctional periodic cellular metals[J]. Philosophical Transactions, 2006, 364(1838): 31-68.

[6]Wieding J, Jonitz A, Bader R. The effect of structural design on mechanical properties and cellular response of additive manufactured titanium scaffolds [J]. Materials, 2012, 5(8): 1336-1347.

[7]Kooistra G. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium[J]. Acta Materialia, 2004, 52(14): 4229-4237.

图6仿真及实验结果对比

(a) 表面凹槽轮廓(b) 筋条轮廓(c) 筋条减薄率(d) 面压缩曲线

Fig. 6Comparison of simulation and experimental results

 (a) Outline of groove on surface (b) Outline of ribs (c)Thinning rate for ribs (d) Surface compression curve

[8]Tan Z L, Bai L S, Bai B Z, et al. Fabrication of lattice truss structures by novel super-plastic forming and diffusion bonding process in a titanium alloy[J]. Materials & Design, 2016, 92: 724-730.

[9]Niu T, Jiang B, Zhang N, et al. Microstructure and mechanical properties of Ti-Ti2AlNb interface[J]. Composites and Advanced Materials, 2021, 30: 2092971X-2633366X.

[10]Du Z H, Ma S B, Han G Q, et al. The parameter optimization and mechanical property of the honeycomb structure for Ti2AlNb based alloy[J]. Journal of Manufacturing Processes, 2021, 65: 206-213.

[11]Xu L, Ruan Q C, Shen Q Y, et al. Optimization design of lattice structures in internal cooling channel with variable aspect Ratio of gas turbine blade[J]. Energies (Basel), 2021, 14(13): 3954: 1-27.

[12]Wu Y, Wu D P, Ma J, et al. A physically based constitutive model of Ti-6Al-4V and application in the SPF/DB process for a pyramid lattice sandwich panel[J]. Archives of Civil and Mechanical Engineering, 2021, 21(106):1-17.

[13]Li W X, Sun F F, Wang P, et al. A novel carbon fiber reinforced lattice truss sandwich cylinder: Fabrication and experiments[J]. Composites Part A: Applied Science and Manufacturing, 2016, 81: 313-322.

[14]Siong Tok D K, Shi Y R, Tian Y T, et al. Factorized f-step radial basis function model for model predictive control[J]. Neurocomputing, 2017, 239: 102-112.

[15]Jeong S, Myrayama M, Yamamoto K. Efficient optimization design method using Kriging model[J]. Journal of Aircraft, 2005, 42(2): 413-420.

[16]Cai S P, Zhang P, Dai W X, et al. Multi-objective optimization for designing metallic corrugated core sandwich panels under air blast loading[J]. The Journal of Sandwich Structures and Materials, 2021, 23(4): 1192-1220.

[17]Du D H, He E M, Li F, et al. Using the hierarchical Kriging model to optimize the structural dynamics of rocket engines[J]. Aerospace Science and Technology, 2020, 107(4): 106248.

[18]Niu X Q, Xu F X, Zou Z. Bionic inspired honeycomb structures and multi-objective optimization for variable graded layers[J]. The Journal of Sandwich Structures and Materials, 2023, 25(2): 215-231.

[19]吴迪鹏,武永,陈明和,等.TC31钛合金板材高温流变行为及组织演变研究[J].稀有金属材料与工程,2019,48(12):3901-3910.

Wu D P, Wu Y, Chen M H, et al. High temperature flow behavior and microstructure evolution of TC31 Titanium alloy sheets[J]. Rare Metal Materials and Engineering, 2019, 48(12): 3901-3910.

[20]Liu Z Q, Wang X S, Jiao X Y, et al. Prediction of microstructure evolution during hot gas forming of Ti2AlNb-based alloy tubular component with square cross-section[J]. Procedia Manufacturing, 2018, 15: 1156-1163.

[21]GB/T 1453—2022, 夹层结构或芯子平压性能试验方法[S].

GB/T 1453—2022, Test method for flatwise compression properties of sandwich constructions or cores[S].
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9