网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
电磁斜孔翻边的板料结构设计和变形规律研究
英文标题:Research on sheet structural design and deformation law for electromagnetic oblique hole flanging
作者:崔晓辉1 2 张磊3 陈浩3 颜子钦3 阳光1 王瀚鹏1 
单位:1.中南大学 轻合金研究院 2.中南大学 极端服役性能精准制造全国重点实验室  3.中南大学 机电工程学院 
关键词:电磁成形 斜孔翻边 翻边高度 板料厚度 翻边圆角半径 
分类号:TG391
出版年,卷(期):页码:2023,48(5):168-175
摘要:

 斜孔翻边被广泛应用于运载火箭燃料贮箱箱底,但现有工艺存在翻边破裂、高度不均匀和多套复杂工装等问题。利用电磁成形的单模具和可以提高材料成形极限的优势,实现了采用单套工装和线圈一次放电成形高精度的斜翻边孔。通过理论解析建立了板料不同区域翻边高度的计算公式,发现斜孔翻边的高度差与板料厚度t0和翻边圆角半径r有关。采用有限元仿真优化了椭圆孔圆心的偏置量,发现随着偏置量的增加,板料斜孔翻边的高度差先降低后增加,当偏置量为5 mm时,板料斜孔翻边后的最大高度差为0.20 mm。在电磁成形过程中,锐角侧先于钝角侧变形,而惯性效应会使得零件最终贴模。放电电压为10 kV条件下板料与模具的最大贴模间隙为0.25 mm,有限元仿真与实验结果的误差小于5%。

  Oblique hole flanging is widely used in the bottom of carrier rocket fuel tank, but there are some problems such as cracked flanging, uneven height and multiple sets of complicated tooling in the existing technology. Therefore, utilizing the advantages of single die and improving the material forming limit of electromagnetic forming, the high precision oblique flanging hole was formed by a single set of tooling and coils in one electric discharge. The results show that the calculation formula of flanging height in different areas of sheet metal is established by theoretical analysis, and the height difference of oblique hole flanging is related to sheet metal thickness t0 and flanging fillet radius r. Using finite element simulation to optimize the offset of elliptic hole center, it is find that with the increasing of offset, the flanging height difference of sheet metal decreases first and then increases, and when the offset is 5 mm, the maximum height difference is 0.20 mm after sheet metal oblique hole flanging. In the process of electromagnetic forming, the acute-angled side deforms before the obtuse-angled side, and the inertia effect leads eventual fitness to die of the part. At the discharge voltage of 10 kV, the maximum fit gap between sheet metal and die is 0.25 mm, and the error between the finite element simulation and the experiment results is less than 5%.

基金项目:
国家自然科学基金资助项目(52275394);中南大学高性能复杂制造国家重点实验室开放课题研究基金资助项目(ZZYJKT2020-02)
作者简介:
作者简介:崔晓辉(1984-),男,博士,副教授,E-mail:cuixh622@csu.edu.cn
参考文献:

[1]张文忠,陈浩,董占国,等. 基于磁脉冲技术的铝合金板材圆孔翻边工艺研究[J]. 航天制造技术,2009,(4):5-7,16.


Zhang W Z,Chen H,Dong Z G,et al.Research on formability of aluminum alloy flanged hole by EMF[J].Aerospace Manufacturing Technology,2009,(4): 5-7,16.

[2]王煜,张松,龚雄,等. 电磁脉冲成形技术在铝合金壁板翻边孔上的应用与研究[J]. 制造业自动化,2021,43(1):1-3,11.

Wang Y, Zhang S, Gong X, et al. Application and research of electromagnetic pulse formingused on flanging hole of aluminum alloy panels [J]. Manufacturing Automation, 2021,43(1):1-3,11.

[3]谢冰鑫,黄亮,黄攀,等. 铝合金板料电磁翻边全流程工艺研究[J]. 中国机械工程,2021,32(2):220-226.

Xie B X, Huang L, Huang P, et al. Research on whole process route of electromagnetic flanging ofaluminum alloy sheets[J]. China Mechanical Engineering,2021, 32(2):220-226.

[4]张下陆,郭慧,赵鸿飞,等. 淬火态2219铝合金板材加热翻边工艺[J]. 锻压技术,2021,46(10):136-140.

Zhang X L, Guo H, Zhao H F, et al. Heating flanging process for quenched state 2219 aluminum alloy sheets[J]. Forming & Stamping Technology, 2021,46(10):136-140.

[5]Psyk V, Risch D, Kinsey B L, et al. Electromagnetic forming-A review[J]. Journal of Materials Processing Technology, 2011,211(5):787-829.

[6]Yu H P, Zheng Q L, Wang S L, et al. The deformation mechanism of circular hole flanging by magnetic pulse forming[J]. Journal of Materials Processing Technology, 2018, 257:54-64.

[7]Imbert J, Worswick M. Reduction of a pre-formed radius in aluminium sheet using electromagnetic and conventional forming[J]. Journal of Materials Processing Technology, 2012,212 (9):1963-1972.

[8]Xiao A, Huang C Q, Yan Z Q, et al. Improved forming capability of 7075 aluminum alloy using electrically assisted electromagnetic forming[J]. Materials Characterization, 2022,183: 111615.

[9]Ma H J, Huang L, Wu M Q, et al. Dynamic ductility and fragmentation for aluminum alloy using electromagnetic ring expansion[J]. Procedia Engineering, 2014,81:787-792.

[10]Yan Z Q, Xiao A, Zhao P, et al. Deformation behavior of 5052 aluminum alloy sheets during electromagnetic hydraulic forming[J]. International Journal of Machine Tools and Manufacture 2022,179:103916.

[11]Su H L, Huang L, Li J J, et al. Investigation on the forming process and the shape control in electromagnetic flanging of aluminum alloy[J]. Procedia Engineering, 2017, 207:335-340.

[12]Yan Z Q, Lin L, Chen Y, et al. Electromagnetic flanging using a field shaper with multiple seams[J]. The International Journal of Advanced Manufacturing Technology, 2022,120:1747-1763.

[13]Zhang L, Cui X H, Deng Q, et al. Comparison of the deformation behavior of circular hole-flanging obtained by electromagnetic forming and stamping[J]. The International Journal of Advanced Manufacturing Technology,2022,121(1-2):171-183.

[14]邱立,刘洪池,姜晨非,等. 双板件电磁翻边成形效率研究[J]. 锻压技术,2022,47(5):96-102.

Qiu L, Liu H C, Jiang C F, et al. Study on forming efficiency of electromagnetic flanging for double-sheet[J]. Forming & Stamping Technology, 2022,47(5):96-102.

[15]Su H L, Huang L, Li J J, et al. Two-step electromagnetic forming: A new forming approach to local features of large-size sheet metal parts[J]. International Journal of Machine Tools and Manufacture,2018,124:99-116.

[16]苏海. 5A02铝合金板材磁脉冲成形极限及单向拉伸变形行为研究[D]. 哈尔滨:哈尔滨工业大学,2013.

Su H. Research on the FLD and Uniaxial Tensile Behaviour of 5A02 Aluminium Alloy Sheet in the Electromagnetic Pulse Forming [D]. Harbin: Harbin Institute of Technology, 2013.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9