网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
2A12铝合金大曲率半径钣金件热变形-淬火复合成形回弹规律
英文标题:Springback law of 2A12 aluminum alloy sheet metal part with a large curvature radius in hot forming-quenching integrated process
作者:吴鹏程1 金晓月1 陈维1 黄莹1 李强1 凡晓波2 
单位:1.上海飞机制造有限公司 2.大连理工大学 机械工程学院 
关键词:2A12铝合金 热变形-淬火复合成形 大曲率半径钣金件 回弹 成形温度 
分类号:TG394
出版年,卷(期):页码:2023,48(5):188-192
摘要:

 航空航天领域存在一批种类多、批量小的大曲率半径铝合金钣金件,其常温成形时回弹大、成形精度差。为此,提出通过热变形-淬火复合成形来实现大曲率半径钣金件的回弹控制。首先,以大曲率半径带状构件为研究对象,揭示热变形-淬火复合成形回弹规律,并结合仿真进行回弹机制分析;然后,采用仿真得到的最佳工艺参数,进行复杂口框件成形。结果表明:较高温度利于抑制回弹,当温度达到490 ℃时,试件完全贴模;而常温成形时,试件几乎恢复平板形状。高温下切向应力显著降低,弹性变形较小,且模内淬火大幅限制了热畸变,进一步抑制了回弹。抑制2A12铝合金大曲率半径钣金件热变形-淬火复合成形回弹的最优成形温度为490 ℃,在该温度下成功地成形了高精度口框件,证实了热变形-淬火复合成形可用于大曲率半径铝合金钣金件的精密成形。

 In the field of aerospace, there are a large number of large curvature radius aluminum alloy sheet metal parts with many kinds and small batches. When forming at room temperature, the springback is large and the forming accuracy is poor. Therefore, the springback control of sheet metal part with a large curvature radius was achieved by hot forming-quenching integrated process. Firstly, for banded part with a large curvature radius, the springback law in the hot forming-quenching integrated process was revealed, and the springback mechanism was analyzed by the simulation. Then, the forming of a complex buccal frame part was carried out by the optimal process parameters obtained by simulation. The results show that higher temperature is beneficial to inhibit springback. When the temperature reaches 490 ℃, the specimen is completely attached to the die, while formed at room temperature, the specimen almost returns to the shape of a flat plate. A higher temperature can cause the significant reduction of tangential stress, and the elastic deformation is small. In addition, in-die quenching greatly limits thermal distortion and further inhibits springback. The optimal forming temperature for hot forming-quenching integrated process springback inhibition of 2A12 aluminum alloy sheet metal part with a large curvature radius is 490 ℃. At this temperature, the high-precision buccal frame part is formed successfully, which proves that the hot forming-quenching integrated process can be used for precision forming of aluminum alloy sheet metal part with a large curvature radius.

基金项目:
作者简介:
作者简介:吴鹏程(1983-),男,学士,高级工程师 ,E-mail:wupengcheng@comac.cc;通信作者:凡晓波(1987-),男,博士,副研究员,E-mail:xbfan@dlut.edu.cn
参考文献:

[1]Zhang D H, Bai D P, Liu J B, et al. Formability behaviors of 2A12 thin-wall part based on DYNAFORM and stamping experiment[J]. Composites Part B:Engineering, 2013, 55: 591-598.


[2]Jiang J F, Zhang Y, Wang Y, et al. Microstructure and mechanical properties of thixoforged complex box-type component of 2A12 aluminum alloy[J]. Materials & Design, 2020, 193: 108859.

[3]杨守杰,戴圣龙. 航空铝合金的发展回顾与展望[J]. 材料导报, 2005, 19(2): 76-80. 

Yang S J,Dai S L. A glimpse at the development and application of aluminum alloys in aviation industry[J]. Materials Review, 2005,19(2): 76-80.

[4]Mahabunphachai S, Ko M. Investigations on forming of aluminum 5052 and 6061 sheet alloys at warm temperatures[J]. Materials & Design, 2010, 31(5): 2422-2434.

[5]Fan X B, Wang X G, Lin Y L, et al. Deformation and strengthening behaviors of Al-Cu-Mg alloy thick plate during hot forming-quenching integrated process[J]. Journal of Materials Research and Technology, 2022, 16: 1231-1242.

[6]Zheng J H, Dong Y C, Zheng K L, et al. Experimental investigation of novel fast-ageing treatments for AA6082 in supersaturated solid solution state[J]. Journal of Alloys and Compounds, 2019, 810: 151934. 

[7]Li Z X, Zhan M, Fan X G, et al. Multi-mode distortion behavior of aluminum alloy thin sheets in immersion quenching[J]. Journal of Materials Processing Technology, 2020, 279: 116576.

[8]Kumar M, Sotirov N, Chimani C M. Investigations on warm forming of AW-7020-T6 alloy sheet[J]. Journal of Materials Processing Technology, 2014, 214(8): 1769-1776.

[9]Lin J G, Dean T A, Garrett R P. A process in forming high strength and complex-shaped Al-alloy sheet components[P]. British Patent:WO2008059242A2,2008-05-22. 

[10]Fan X B, Wang X G, Lin Y L, et al. Biaxial formability and microstructure of an Al-Mg-Si alloy sheet post solution heat treatment[J]. Journal of Alloys and Compounds, 2022, 902: 163753

[11]Shao Z T, Lee J Y, Wang J L, et al. A study of various heating effects on the microstructure and mechanical properties of AA6082 using EBSD and CPFE[J]. Journal of Alloys and Compounds, 2020, 818: 152921.

[12]Bariani P F, Bruschi S, Ghiotti A, et al. Deformation of AA6016 aluminum alloy sheets at high temperature and strain rate[J]. Materials Science Forum, 2014, 783-786: 114-119.

[13]Fan X B, He Z B, Yuan S J, et al. Experimental investigation on hot forming-quenching integrated process of 6A02 aluminum alloy sheet[J]. Materials Science and Engineering: A, 2013, 573: 154-160.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9