网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铝合金弹-塑性蠕变时效形性演变建模分析
英文标题:Modelling and analysis of evolution for deformation and property in elastic-plastic creep ageing of aluminium alloy
作者:周文彬1 甘宛妮1 杨小克2 杨力伟3 杨波4 李东升1 李勇1 
单位:1.北京航空航天大学 机械工程及自动化学院 2.航天海鹰(哈尔滨)钛业有限公司  3.伦敦玛丽女王大学 工程与材料学院 4.中国航发沈阳黎明航空发动机有限责任公司 
关键词:铝合金  蠕变时效  弹塑性加载 本构建模 形性演变 
分类号:TG306
出版年,卷(期):页码:2023,48(5):227-235
摘要:

大尺寸复杂薄壁结构精确成形、成性要求传统蠕变时效成形工艺从弹性加载扩展至弹-塑性加载,为了研究此弹-塑性加载状态对材料与结构蠕变变形及时效强化的影响,开展从应力松驰时效特性表征、跨尺度本构建模到典型带筋壁板蠕变时效成形仿真与试验分析的系列研究。考虑弹、塑性加载下不同初始位错特性建立的基于蠕变背应力演变的跨尺度材料模型,可有效实现弹-塑性蠕变时效特性模拟与预测。典型带筋壁板类结构的蠕变时效成形试验与仿真结果表明,加载过程中产生的塑性应变会大幅降低试验件的回弹率,最大加载等效总应变为1.62%和0.46%的试验件,其回弹率分别为13.8%和31.0%。试验件筋条及蒙皮区域的屈服强度均得到提高,且成形后筋条的屈服强度略高于蒙皮。

The traditional creep age forming process is required to extend from elastically loading to elastic-plastically loading for achieving the precise formability and property of large thin-walled structures with complex shapes. To investigate the effect of elastic-plastically loading state on the creep deformation and age hardening of materials and structures, a series of studies were conducted, including the characterisation of stress relaxation ageing, building of cross-scale constitutive model, and the simulation and experimental analysis for creep age forming of typical stiffened panels. The cross-scale material model based on the variation of creep threshold stress, which considers the different initial dislocation characteristis under elastic-plastically loading, can effectively realize the simulation and prediction of the elastic-plastic creep ageing characterisation. The experimental and simulation results of creep age forming for typical stiffened panel structures show that the plastic strain produced in the loading process significantly reduces the springback percentage of specimens. For the specimens with the maximum loading total equivalent strains of 1.62% and 0.46%, the springback percentages are 13.8% and 31.0%, respectively. The yield strength of stiffeners and skin areas of the experimental specimen is improved, and the yield strength of  stiffener is slightly higher than that of skin after forming.

基金项目:
国家自然科学基金资助项目(52005020);广东省基础与应用基础研究基金资助项目(2019A1515110851)
作者简介:
作者简介:周文彬(1994-),男,博士,副教授,E-mail:zhouwb@buaa.edu.cn;通信作者:李勇(1989-),男,博士,教授,E-mail:liyong19@buaa.edu.cn
参考文献:

[1]王建光,龚集响,李晓凯,等. 大型贮箱壁板蠕变时效成形高效均匀传热模具结构优化[J]. 锻压技术,2022,47(9):196-202.


Wang J G,Gong J X,Li X K,et al. Optimization on die structure with high efficient and uniform heat transfer for creep aging of large tank wall panels[J]. Forging & Stamping Technology, 2022, 47(9): 196-202.

[2]龚习,王恒强,付敏敏,等. 航空航天用Al-Cu-Mn系高强铝合金的研究进展[J]. 热加工工艺,2015,44(22):6-10.

Gong X, Wang H Q, Fu M M, et al. Research development of high-strength Al-Cu-Mn series aluminum alloy used for aviation and areospace[J]. Hot Working Technology, 2015, 44(22): 6-10.

[3]Zhan L H, Lin J G, Dean T A. A review of the development of creep age forming: Experimentation, modelling and applications[J]. International Journal of Machine Tools and Manufacture, 2011, 51(1): 1-17.

[4]李勇,李东升,李小强. 大型复杂壁板构件塑性成形技术研究与应用进展[J]. 航空制造技术,2020,63(21):36-45.

Li Y, Li D S, Li X Q. A review of plastic forming technologies and applications for large and complex-shaped panels[J]. Aeronautical Manufacturing Technology, 2020, 63(21): 36-45.

[5]Lam A C L, Shi Z S, Yang H L, et al. Creep-age forming AA2219 plates with different stiffener designs and pre-form age conditions: Experimental and finite element studies[J]. Journal of Materials Processing Technology, 2015, 219: 155-163.

[6]Li Y, Shi Z S, Lin J G, et al. FE simulation of asymmetric creep-ageing behaviour of AA2050 and its application to creep age forming[J]. International Journal of Mechanical Sciences, 2018, 140: 228-240.

[7]Inforzato D J, Costa Junior P R, Fernandez F F, et al. Creep-age forming of AA7475 aluminum panels for aircraft lower wing skin application[J]. Materials Research, 2012, 15(4): 596-602.

[8]邓运来,周亮,晋坤,等. 2124铝合金蠕变时效的微结构与性能[J]. 中国有色金属学报,2010,20(11): 2106-2111.

Deng Y L, Zhou L, Jin K, et al. Microstructure and properties of creep aged 2124 aluminum alloy[J]. The Chinese JournaI of Nonferrous Metals, 2010, 20(11): 2106-2111.

[9]Wang X, Rong Q, Shi Z S, et al. Investigation of stress effect on creep, precipitation and dislocation evolution of Al-Li alloy during creep age forming[J]. Materials Science and Engineering: A, 2022, 836: 142723.

[10]吕凤工,黄遐,曾元松. 7B04铝合金带筋构件的蠕变时效变形行为研究[J]. 锻压技术,2015,40(3):99-104.

Lyu F G, Huang X, Zeng Y S. Research on deformation behavior of creep age forming for 7B04 aluminum alloy stiffened components[J]. Forging & Stamping Technology, 2015, 40(3): 99-104. 

[11]Ma P P, Zhan L H, Liu C H, et al. Strong stress-level dependence of creep-ageing behavior in Al-Cu-Li alloy[J]. Materials Science and Engineering: A, 2021, 802: 140381.

[12]Ho K C, Lin J G, Dean T A. Constitutive modelling of primary creep for age forming an aluminium alloy[J]. Journal of Materials Processing Technology, 2004, 153-154: 122-127.

[13]Li Y, Shi Z S, Lin J G, et al. A unified constitutive model for asymmetric tension and compression creep-ageing behaviour of naturally aged Al-Cu-Li alloy[J]. International Journal of Plasticity, 2017, 89: 130-149.

[14]黄霖,万敏,黄硕,等.7B04铝合金厚板蠕变时效成形有限元分析[J].航空制造技术,2007,(z1):484-487.

Huang L, Wan M, Huang S, et al. FE analysis of creep age forming for aluminum alloy 7B04 plate[J]. Aeronautical Manufacturing Technology,2007,(z1):484-487.

[15]Luo H, Li W D, Li C, et al. Investigation of creep-age forming of aluminum lithium alloy stiffened panel with complex structures and variable curvature[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9): 3265-3271.

[16]Lyu F G, Li Y, Shi Z S, et al. Stress and temperature dependence of stress relaxation ageing behaviour of an Al-Zn-Mg alloy[J]. Materials Science and Engineering: A, 2020, 773: 138859.

[17]Ma Z Y, Zhan L H, Liu C H, et al. Stress-level-dependency and bimodal precipitation behaviors during creep ageing of Al-Cu alloy: Experiments and modeling[J]. International Journal of Plasticity, 2018, 110: 183-201.

[18]Rong Q, Shi Z S, Li Y, et al. Constitutive modelling and its application to stress-relaxation age forming of AA6082 with elastic and plastic loadings[J]. Journal of Materials Processing Technology, 2021, 295: 117168.

[19]Yang Y L, Zhan L H, Shen R L, et al. Investigation on the creep-age forming of an integrally-stiffened AA2219 alloy plate: Experiment and modeling[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5): 2015-2025.

[20]郑英,吴阳,张劲,等. 7475铝合金网格筋条壁板蠕变成形的试验和数值模拟[J]. 锻压技术,2012, 37(5):42-46.

Zheng Y, Wu Y, Zhang J, et al. Experiment and numerical simulation of creep forming for 7475 aluminum alloy integrally stiffened panel[J]. Forging & Stamping Technology, 2012, 37(5): 42-46.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9