[1]Giuseppe I. Manufacturing strategies for efficiency in energy and resources use:The role of metal shaping processes[J]. Journal of Cleaner Production,2017,142(4):2872-2886.
[2]范子杰, 桂良进, 苏瑞意. 汽车轻量化技术的研究与进展[J]. 汽车安全与节能学报,2014, 5(1): 1-16.
Fan Z J, Gui L J, Su R Y. Research and development of automotive lightweight technology[J]. Journal of Automotive Safety and Energy,2014, 5(1): 1-16.
[3]Gronostajski Z, Pater Z, Madej L, et al. Recent development trends in metal forming[J]. Archives of Civil and Mechanical Engineering,2019, 19(3): 898-941.
[4]陈建国, 袁海兵. 汽车转向轴扭转疲劳试验台开发[J]. 机电工程技术,2013, 42(12): 1-3.
Chen J G, Yuan H B. Development of test stand for torsional fatigue test of vehicle steering shaft[J]. Mechanical & Electrical Engineering Technology,2013, 42(12): 1-3.
[5]常艳昌, 彭浩, 张晓虎. 商用车5T前轴结构轻量化设计方法[J]. 汽车实用技术,2022, 47(10): 38-43.
Chang Y C, Peng H, Zhang X H. Commercial vehicle 5T front axle structure lightweight design method[J]. Automobile Applied Technology,2022, 47(10): 38-43.
[6]朱发渊, 汪朝晖, 吕密. 基于遗传算法的汽车驱动轴多目标轻量化优化设计[J]. 机械设计与制造,2015,(3): 87-90.
Zhu F Y, Wang Z H, Lyu M. Multiple objective lightweight optimization design of vehicle drive shaft based on genetic algorithm[J]. Machinery Design & Manufacture,2015,(3): 87-90.
[7]汪朝晖, 朱发渊, 吕密, 等. 转向驱动桥变径全空心半轴的设计及力学特性[J]. 华中科技大学学报:自然科学版,2015, 43(2): 40-44.
Wang Z H, Zhu F Y, Lyu M, et al. Design of steering drive axles variable diameter hollow half shaft and its mechanical characteristics[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition,2015, 43(2): 40-44.
[8]承姿辛, 刘玉敏, 邱光琦. 基于可靠性优化的空心半轴轻量化设计[J]. 机械设计,2023, 40(1): 34-39.
Cheng Z X, Liu Y M, Qiu G Q. Lightweight design of hollow half shaft based on reliability optimization[J]. Journal of Machine Design,2023, 40(1): 34-39.
[9]公彦军, 李萌芳, 高蕊. 重型商用车传动轴花键轴轻量化研究[J]. 重型汽车,2021,(6): 11-12.
Gong Y J, Li M F, Gao R. Research on lightweight of spline drive shaft spline of heavy commercial vehicles[J]. Heavy Truck,2021,(6): 11-12.
[10]邰清安, 李治华, 孙立群, 等. 航空发动机塑性成形技术的应用与展望[J]. 航空制造技术,2014, 451(7): 34-39.
Tai Q A, Li Z H, Sun L Q, et al. Application and prospect of aeroengine plastic forming technology[J]. Aeronautical Manufacturing Technology,2014, 451(7): 34-39.
[11]魏科, 马庆, 徐勇, 等. 大型/复杂模锻件省力成形工艺研究进展[J]. 塑性工程学报,2021, 28(5): 166-168.
Wei K, Ma Q, Xu Y, et al. Research progress of less-loading forming technology for large-sized/complex die forgings[J]. Journal of Plasticity Engineering. 2021, 28(5): 166-168.
[12]李栋材, 卢曦, 孙子莹, 等. 某汽车旋锻轴毛坯尺寸要求研究[J]. 塑性工程学报,2019, 26(1): 72-76.
Li D C, Lu X, Sun Z Y, et al. Investigation on workblank size requirements of rotary-swaging shafts of an automobile[J]. Journal of Plasticity Engineering,2019, 26(1): 72-76.
[13]Zhang D W, Xu F F, Yu Z C, et al. Coulomb, Tresca and Coulomb-Tresca friction models used in analytical analysis for rolling process of external spline[J]. Journal of Materials Processing Technology,2021,292:117059.
[14]Yang Y Z, Fan L X, Xu C. Formation criterion of fissure defects in the inner wall of the radial forged steel tube[J]. The International Journal of Advanced Manufacturing Technology,2022,123: 3647-3655.
[15]单陇红, 王凌浩, 刘顺彭, 等. 42CrMo4钢高温拉伸断裂准则与机理的研究[J]. 热加工工艺,2021, 50(4): 59-62.
Shan L H, Wang L H, Liu S P, et al. Study on tensile fracture criterion and mechanism of 42CrMo4 steel at high temperature[J]. Hot Working Technology,2021, 50(4): 59-62.
|