网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
汽车变速器轴轻量化设计与旋转锻造仿真
英文标题:Lightweight design and rotary swaging simulation for automobile transmission shaft
作者:张琦 田天泰 张毓 韩宾 
单位:西安交通大学 
关键词:空心设计 轻量化 汽车变速器轴 旋转锻造 缩径 变壁厚 
分类号:U466;TG316
出版年,卷(期):页码:2023,48(5):266-274
摘要:

 汽车零部件的轻量化设计与制造是助力整车轻量化、实现绿色制造和降低汽车碳排放的重要途径。以汽车变速器轴为对象,对其轻量化设计与高效精密制造进行了研究,基于Abaqus静力分析研究了相同静扭载荷下变速器轴不同空心轻量化设计时的应力分布,基于FORGE探究了变速器轴旋转锻造缩径过程的变形特征,实现了对设计管料的旋锻工艺验证。结果表明:空心设计能够很好地实现变速器轴的轻量化,结合变壁厚设计能够改善应力分布、提升轻量化水平至50%左右;使用旋转锻造工艺能够实现变速器轴的缩径和壁厚增厚,保证良好的精度,同时将成形损伤累积和成形力控制在较低水平。

 The lightweight design and manufacturing of automobile parts is an important way to help vehicle lightweight, realize green manufacturing and reduce carbon emissions. Therefore, for the automobile transmission shaft, its lightweight design and efficient precision manufacturing were studied, and based on Abaqus static analysis, the stress distribution of transmission shaft with different hollow lightweight designs under the same static torsional load was studied. Furthermore, based on FORGE, the deformation characteristics of transmission shaft during the rotary swaging diameter reduction process were explored, and the rotary swaging process verification on the designed tube material was realized. The results show that the hollow design can well realize the lightweight of transmission shaft, and combined with the variable wall thickness design can improve the stress distribution and increase the lightweight level to about 50%. The use of rotary swaging process can reduce the diameter and thicken the wall thickness of transmission shaft, ensuring good accuracy while keeping forming damage accumulation and forming forces controlled at a low level.

基金项目:
国家自然科学基金资助项目(52275375);陕西省重点研发计划(2021GXLH-Z-037)
作者简介:
作者简介:张琦(1978-),男,博士,教授,E-mail:henryzhang@mail.xjtu.edu.cn
参考文献:

[1]Giuseppe I. Manufacturing strategies for efficiency in energy and resources use:The role of metal shaping processes[J]. Journal of Cleaner Production,2017,142(4):2872-2886.


[2]范子杰, 桂良进, 苏瑞意. 汽车轻量化技术的研究与进展[J]. 汽车安全与节能学报,2014, 5(1): 1-16.

Fan Z J, Gui L J, Su R Y. Research and development of automotive lightweight technology[J]. Journal of Automotive Safety and Energy,2014, 5(1): 1-16.

[3]Gronostajski Z, Pater Z, Madej L, et al. Recent development trends in metal forming[J]. Archives of Civil and Mechanical Engineering,2019, 19(3): 898-941.

[4]陈建国, 袁海兵. 汽车转向轴扭转疲劳试验台开发[J]. 机电工程技术,2013, 42(12): 1-3.

Chen J G, Yuan H B. Development of test stand for torsional fatigue test of vehicle steering shaft[J]. Mechanical & Electrical Engineering Technology,2013, 42(12): 1-3.

[5]常艳昌, 彭浩, 张晓虎. 商用车5T前轴结构轻量化设计方法[J]. 汽车实用技术,2022, 47(10): 38-43.

Chang Y C, Peng H, Zhang X H. Commercial vehicle 5T front axle structure lightweight design method[J]. Automobile Applied Technology,2022, 47(10): 38-43.

[6]朱发渊, 汪朝晖, 吕密. 基于遗传算法的汽车驱动轴多目标轻量化优化设计[J]. 机械设计与制造,2015,(3): 87-90.

Zhu F Y, Wang Z H, Lyu M. Multiple objective lightweight optimization design of vehicle drive shaft based on genetic algorithm[J]. Machinery Design & Manufacture,2015,(3): 87-90.

[7]汪朝晖, 朱发渊, 吕密, 等. 转向驱动桥变径全空心半轴的设计及力学特性[J]. 华中科技大学学报:自然科学版,2015, 43(2): 40-44.

Wang Z H, Zhu F Y, Lyu M, et al. Design of steering drive axles variable diameter hollow half shaft and its mechanical characteristics[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition,2015, 43(2): 40-44.

[8]承姿辛, 刘玉敏, 邱光琦. 基于可靠性优化的空心半轴轻量化设计[J]. 机械设计,2023, 40(1): 34-39.

Cheng Z X, Liu Y M, Qiu G Q. Lightweight design of hollow half shaft based on reliability optimization[J]. Journal of Machine Design,2023, 40(1): 34-39.

[9]公彦军, 李萌芳, 高蕊. 重型商用车传动轴花键轴轻量化研究[J]. 重型汽车,2021,(6): 11-12.

Gong Y J, Li M F, Gao R. Research on lightweight of spline drive shaft spline of heavy commercial vehicles[J]. Heavy Truck,2021,(6): 11-12.

[10]邰清安, 李治华, 孙立群, 等. 航空发动机塑性成形技术的应用与展望[J]. 航空制造技术,2014, 451(7): 34-39.

Tai Q A, Li Z H, Sun L Q, et al. Application and prospect of aeroengine plastic forming technology[J]. Aeronautical Manufacturing Technology,2014, 451(7): 34-39.

[11]魏科, 马庆, 徐勇, 等. 大型/复杂模锻件省力成形工艺研究进展[J]. 塑性工程学报,2021, 28(5): 166-168.

Wei K, Ma Q, Xu Y, et al. Research progress of less-loading forming technology for large-sized/complex die forgings[J]. Journal of Plasticity Engineering. 2021, 28(5): 166-168.

[12]李栋材, 卢曦, 孙子莹, 等. 某汽车旋锻轴毛坯尺寸要求研究[J]. 塑性工程学报,2019, 26(1): 72-76.

Li D C, Lu X, Sun Z Y, et al. Investigation on workblank size requirements of rotary-swaging shafts of an automobile[J]. Journal of Plasticity Engineering,2019, 26(1): 72-76.

[13]Zhang D W, Xu F F, Yu Z C, et al. Coulomb, Tresca and Coulomb-Tresca friction models used in analytical analysis for rolling process of external spline[J]. Journal of Materials Processing Technology,2021,292:117059.

[14]Yang Y Z, Fan L X, Xu C. Formation criterion of fissure defects in the inner wall of the radial forged steel tube[J]. The International Journal of Advanced Manufacturing Technology,2022,123: 3647-3655.

[15]单陇红, 王凌浩, 刘顺彭, 等. 42CrMo4钢高温拉伸断裂准则与机理的研究[J]. 热加工工艺,2021, 50(4): 59-62.

Shan L H, Wang L H, Liu S P, et al. Study on tensile fracture criterion and mechanism of 42CrMo4 steel at high temperature[J]. Hot Working Technology,2021, 50(4): 59-62.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9