[1]张国庆, 田世藩, 汪武祥, 等. 先进航空发动机涡轮盘制备工艺及其关键技术[J]. 新材料产业, 2009,(11): 16-21.
Zhang G Q, Tian S F, Wang W X, et al. Advanced aero-engine turbine disc preparation process and its key technology[J]. Advanced Materials Industry, 2009,(11): 16-21.
[2]肖磊, 何英杰, 马向东, 等. 一种新型镍基粉末高温合金WZ-A3挤压工艺研究[J]. 稀有金属材料与工程, 2022, 51(6): 2215-2223.
Xiao L, He Y J, Ma X D, et al. Study of a new nickel-based powder high-temperature alloy WZ-A3 extrusion process[J]. Rare Metal Materials and Engineering, 2022, 51(6): 2215-2223.
[3]胡连喜, 冯小云. 粉末冶金高温合金研究及发展现状[J]. 粉末冶金工业, 2018, 28(4): 1-7.
Hu L X, Feng X Y. Research and development status of powder metallurgy high temperature alloys[J]. Powder Metallurgy Industry, 2018, 28(4): 1-7.
[4]邹金文, 汪武祥. 粉末高温合金研究进展与应用[J]. 航空材料学报, 2006,(3): 244-250.
Zou J W, Wang W X. Research progress and applications of powdered high temperature alloys[J]. Journal of Aeronautical Materials, 2006,(3): 244-250.
[5]夏天, 张义文, 迟悦, 等. Hf和Zr含量对FGH96合金平衡相及PPB的影响[J]. 材料热处理学报, 2013, 34(8): 60-67.
Xia T, Zhang Y W, Chi Y, et al. Effect of Hf and Zr content on the equilibrium phase and PPB of FGH96 alloy[J]. Transactions of Materials and Heat Treatment, 2013, 34(8): 60-67.
[6]赵军普, 陶宇, 袁守谦, 等. 粉末冶金高温合金中的原始颗粒边界(PPB)问题[J]. 粉末冶金工业, 2010, 20(4): 43-49.
Zhao J P, Tao Y, Yuan S Q, et al. Primitive particle boundary (PPB) problem in powder metallurgy high temperature alloys[J]. Powder Metallurgy Industry, 2010, 20(4): 43-49.
[7]曾胜,常海平,张金,等.A356铝合金的高温流变行为及本构模型研究[J].锻压技术,2022,47(4):242-248.
Zeng S,Chang H P,Zhang J,et al. Study on high-temperature rheological behavior and constitutive model for A356 aluminum alloy[J]. Forging & Stamping Technology,2022,47(4):242-248.
[8]王岩, 谷宇, 王珏, 等. 铸态镍基高温合金GH4698热变形行为[J]. 锻压技术, 2021, 46(11): 250-254.
Wang Y, Gu Y, Wang J, et al. Thermal deformation behavior of cast nickel-based high temperature alloy GH4698[J]. Forging & Stamping Technology, 2021, 46(11): 250-254.
[9]陈拂晓, 郭云汉, 郭俊卿, 等. AZ31B镁合金热压缩力学行为与本构方程建立[J]. 锻压技术, 2011, 36(5): 144-148.
Chen F X, Guo Y H, Guo J Q, et al. Hot-compression mechanical behavior of AZ31B magnesium alloy and establishment of the instantonal equations[J]. Forging & Stamping Technology, 2011, 36(5): 144-148.
[10]Sellars C M,Mctegart W J.On the mechanism of hot deformation[J].Acta metallurgica,1966,14(9):1136-1138.
[11]雷雨, 徐念澳, 张晨洁, 等. 热变形中TC18钛合金本构关系及第二类再结晶全图研究[J]. 稀有金属材料与工程, 2020, 49(12): 4192-4198.
Lei Y, Xu N A, Zhang C J, et al. Study of TC18 titanium alloy intrinsic structure relationship in thermal deformation and the second type of recrystallization in the whole picture[J]. Rare Metal Materials and Engineering, 2020, 49(12): 4192-4198.
[12]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.
[13]Wu H, Wen S P, Huang H, et al. Hot deformation behavior and constitutive equation of a new type Al-Zn-Mg-Er-Zr alloy during isothermal compression[J]. Materials Science and Engineering: A, 2016, 651: 415-424.
[14]Huang C Q, Deng J, Wang S X, et al. An Investigation on the softening mechanism of 5754 aluminum alloy during multistage hot deformation [J]. Metals, 2017, 7(4): 107.
|