网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
真空固溶态FGH4096高温合金的热变形行为及本构模型
英文标题:Thermal deformation behavior and constitutive equation on superalloy FGH4096 in vacuum solid solution state
作者:刘剑箫1 2 翟月雯1 姜超1 周乐育1 周质光1 
单位:1.中国机械总院集团北京机电研究所有限公司 2.中机真空科技(济南)有限公司 
关键词:FGH4096高温合金 热变形行为 本构方程 真空固溶 微观组织 
分类号:TG166.7
出版年,卷(期):页码:2023,48(5):306-313
摘要:

 为了研究FGH4096高温合金经过真空固溶热处理后的热变形行为,通过Gleeble-3500热模拟试验机在变形温度为1020、1050、1080、1110和1140 ℃,应变速率为0.001、0.01、0.1和1 s-1,变形量为60%条件下进行等温恒应变速率热压缩试验,基于热压缩试验的真应力-真应变曲线,采用回归分析以及拟合多项式建立了具有应变补偿高温变形的Arrhenius本构方程。结果表明:随着变形温度升高至1080和1110 ℃,合金发生完全动态再结晶;在1080 ℃、0.001 s-1和1110 ℃、0.01 s-1条件下变形时, 相同应变速率下变形温度较低时的再结晶晶粒尺寸有所粗化;合金的热变形激活能为902.049 kJ·mol-1。本构模型能够较好地预测合金在热变形过程中的流变行为,可以通过控制应变速率和变形温度来控制热加工过程的应力水平。

 In order to study the thermal deformation behavior of superalloy FGH4096 after vacuum solution heat treatment, the isothermal constant strain rate thermal compression test was conducted by thermal simulation test machine Gleeble-3500 at the deformation temperatures of 1020, 1050, 1080, 1110 and 1140 ℃, the strain rates of 0.001, 0.01, 0.1 and 1 s-1, and the deformation amount of 60%, and based on the true stress-true strain curve of the thermal compression test, the Arrhenius constitutive equation with strain compensation for high temperature deformation was established by regression analysis and polynomial fitting. The results show that when the deformation temperature increases to 1080 and 1110 ℃, the alloy undergoes complete dynamic recrystallization. When the alloy is deformed at the condition of 1080 ℃, 0.001 s-1 and 1110 ℃, 0.01 s-1, the recrystallized grain size is coarsened at lower deformation temperatures under the same strain rate. The heat deformation activation energy of alloy is 902.049 kJ·mol-1. Thus, the constitutive model can accurately predict the rheological behavior of alloy during the thermal deformation process, and the stress level during thermal processing can be controlled by controlling the strain rate and the deformation temperature.

基金项目:
济南市2019年“5150创新团队项目”
作者简介:
作者简介:刘剑箫(1992-),女,硕士研究生 ,E-mail:woshiliujianxiao@126.com;通信作者:翟月雯(1982-),女,博士,研究员,E-mail:zhaiyuewen@163.com
参考文献:

[1]张国庆, 田世藩, 汪武祥, 等. 先进航空发动机涡轮盘制备工艺及其关键技术[J]. 新材料产业, 2009,(11): 16-21.


Zhang G Q, Tian S F, Wang W X, et al. Advanced aero-engine turbine disc preparation process and its key technology[J]. Advanced Materials Industry, 2009,(11): 16-21.

[2]肖磊, 何英杰, 马向东, 等. 一种新型镍基粉末高温合金WZ-A3挤压工艺研究[J]. 稀有金属材料与工程, 2022, 51(6): 2215-2223.

Xiao L, He Y J, Ma X D, et al. Study of a new nickel-based powder high-temperature alloy WZ-A3 extrusion process[J]. Rare Metal Materials and Engineering, 2022, 51(6): 2215-2223.

[3]胡连喜, 冯小云. 粉末冶金高温合金研究及发展现状[J]. 粉末冶金工业, 2018, 28(4): 1-7.

Hu L X, Feng X Y. Research and development status of powder metallurgy high temperature alloys[J]. Powder Metallurgy Industry, 2018, 28(4): 1-7.

[4]邹金文, 汪武祥. 粉末高温合金研究进展与应用[J]. 航空材料学报, 2006,(3): 244-250.

Zou J W, Wang W X. Research progress and applications of powdered high temperature alloys[J]. Journal of Aeronautical Materials, 2006,(3): 244-250.

[5]夏天, 张义文, 迟悦, 等. Hf和Zr含量对FGH96合金平衡相及PPB的影响[J]. 材料热处理学报, 2013, 34(8): 60-67.

Xia T, Zhang Y W, Chi Y, et al. Effect of Hf and Zr content on the equilibrium phase and PPB of FGH96 alloy[J]. Transactions of Materials and Heat Treatment, 2013, 34(8): 60-67.

[6]赵军普, 陶宇, 袁守谦, 等. 粉末冶金高温合金中的原始颗粒边界(PPB)问题[J]. 粉末冶金工业, 2010, 20(4): 43-49.

Zhao J P, Tao Y, Yuan S Q, et al. Primitive particle boundary (PPB) problem in powder metallurgy high temperature alloys[J]. Powder Metallurgy Industry, 2010, 20(4): 43-49.

[7]曾胜,常海平,张金,等.A356铝合金的高温流变行为及本构模型研究[J].锻压技术,2022,47(4):242-248.

Zeng S,Chang H P,Zhang J,et al. Study on high-temperature rheological behavior and constitutive model for A356 aluminum alloy[J]. Forging & Stamping Technology,2022,47(4):242-248.

[8]王岩, 谷宇, 王珏, 等. 铸态镍基高温合金GH4698热变形行为[J]. 锻压技术, 2021, 46(11): 250-254.

Wang Y, Gu Y, Wang J, et al. Thermal deformation behavior of cast nickel-based high temperature alloy GH4698[J]. Forging & Stamping Technology, 2021, 46(11): 250-254.

[9]陈拂晓, 郭云汉, 郭俊卿, 等. AZ31B镁合金热压缩力学行为与本构方程建立[J]. 锻压技术, 2011, 36(5): 144-148.

Chen F X, Guo Y H, Guo J Q, et al. Hot-compression mechanical behavior of AZ31B magnesium alloy and establishment of the instantonal equations[J]. Forging & Stamping Technology, 2011, 36(5): 144-148.

[10]Sellars C M,Mctegart W J.On the mechanism of hot deformation[J].Acta metallurgica,1966,14(9):1136-1138.

[11]雷雨, 徐念澳, 张晨洁, 等. 热变形中TC18钛合金本构关系及第二类再结晶全图研究[J]. 稀有金属材料与工程, 2020, 49(12): 4192-4198.

Lei Y, Xu N A, Zhang C J, et al. Study of TC18 titanium alloy intrinsic structure relationship in thermal deformation and the second type of recrystallization in the whole picture[J]. Rare Metal Materials and Engineering, 2020, 49(12): 4192-4198.

[12]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.

[13]Wu H, Wen S P, Huang H, et al. Hot deformation behavior and constitutive equation of a new type Al-Zn-Mg-Er-Zr alloy during isothermal compression[J]. Materials Science and Engineering: A, 2016, 651: 415-424.

[14]Huang C Q, Deng J, Wang S X, et al. An Investigation on the softening mechanism of 5754 aluminum alloy during  multistage hot  deformation [J]. Metals, 2017, 7(4): 107.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9