网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
肋板对吸能构件耐撞性的影响及优化设计
英文标题:Influence of ribs on impact resistance for energy-absorbing components and optimal design
作者:马箫 苗诗梦 
单位:沈阳航空航天大学 
关键词:吸能构件 附加肋板  屈曲模式  耐撞性 吸能特性 
分类号:O342
出版年,卷(期):页码:2023,48(5):314-320
摘要:

 为了提高单胞薄壁吸能构件的耐撞性,设计了外接附加肋板的单胞薄壁吸能构件,并且研究了肋板形状对构件的耐撞性的影响。首先,基于ABAQUS的动力显示分析,模拟了不同肋板形状的铝合金薄壁圆管在轴向压缩下的吸能特性及破坏模式,发现外加三角形肋板的吸能构件的破坏模式稳定、吸能高。然后,利用响应面模型对吸能构件进行了优化,并提出了评价吸能构件耐撞性的新指标——耐撞性指数P。结果表明:优化后的吸能构件的基础单元圆管厚度为2.07 mm,三角形肋板厚度为0.98 mm,耐撞性指数P较优化前提高了9.5%,此时构件的比吸能和平均承载力分别为47542.1 kJ·g-1和12760.300 kJ。

 In order to improve the impact resistance of single-cell thin-walled energy-absorbing component, a single-cell thin-wall energy-absorbing component with external additional ribs was designed, and the influence of rib shape on the impact resistance of component was investigated. Firstly, based on the ABAQUS dynamic display analysis, the energy absorption characteristics and damage modes of aluminum alloy thin-walled circular tubes with different rib shapes under axial compression were simulated. And the results show that the amage mode model of the energy-absorbing component with external additional triangular ribs is stable and the energy absorption is high. Then, the energy-absorbing component was optimized by the response surface model, and a new index for evaluating the impact resistance of the energy-absorbing component of impact resistance index P was proposed. The results show that after optimization, the thickness of circular tube for the base unit of the energy-absorbing component is 2.07 mm, the thickness of the triangular rib is 0.98 mm, the impact resistance index P is increased by 9.5% compared with that before optimization. At this time, the specific energy absorption and the average bearing capacity of component are 47542.1 kJ·g-1 and 12760.300 kJ, respectively.

基金项目:
校引进人才科研启动基金项目(19YB18)
作者简介:
作者简介:马箫(1987-),女,博士,讲师,E-mail:540721373@qq.com;通信作者:苗诗梦(1996-),女,硕士研究生,E-mail:2050598542@qq.com
参考文献:

[1]白少璞. CFRP薄壁管吸能特性研究及优化设计[D]. 辽宁: 大连理工大学, 2019.


Bai S P. Energy Absorption Characteristics and Optimization Design of CFRP Thin-walled Tube[D]. Liaoning:Dalian University of Technology, 2019.

[2]孙成智, 曹广军, 王光耀. 为提高低速碰撞性能的轿车保险杠吸能盒结构优化[J]. 汽车工程, 2010, 32(12): 1093-1096,1101.

Sun C Z, Cao G J, Wang G Y. Structural optimization of car bumper crash box for improving low-speed crash performance[J]. Automotive Engineering, 2010,32(12):1093-1096,1101.

[3]李志斌, 虞吉林, 郑志军, 等. 薄壁管及其泡沫金属填充结构耐撞性的实验研究[J]. 实验力学, 2012, 27(1):77-86.

Li Z B, Yu J L, Zhen Z J, et al. An experimental study on the crashworthiness of thin-walled tubes and their metallic foam-filled structures [J]. Journal of Experimental Mechanics, 2012, 27(1):77-86.

[4]Nia A A,Parsapour M. Comparative analysis of energy absorption capacity of simple and mult-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections[J]. Thin-walled Strutures,2014,74: 155-165.

[5]Faruque O,Saha N,Guimberteau T. Extruded Aluminum Crash can Topology for Maximizing Specific Energy Absorption[R].Detroit:SAE,2008.

[6]余同希. 结构的耐撞性和能量吸收装置[J]. 力学与实践, 1985,(3):2-9.

Yu T X. The crash resistance and energy absorption device of the structure[J]. Mechanics in Engineering, 1985,(3):2-9.

[7]Nia A A, Hamedani J H. Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries[J]. Thin-Walled Structures,2010,48(12):946-954.

[8]张立玲, 林逸, 高峰. 不同材料薄壁圆管准静态轴压变形特性[J]. 塑性工程学报,2010,17(4):62-65.

Zhang L L, Lin Y, Gao F. Axial collapsed behavior analysis of thin-walled circular tubes with different materials[J]. Journal of Plasticity Engineering,2010,17(4):62-65.

[9]张西富, 马鸣图, 王刚刚. 6061T6 铝合金前防撞梁的开发与应用 [J].铝加工, 2018, (5):15-20,37.

Zhang X F, Ma M T, Wang G G. Development and application of front anti-collision beam for 6061T6 aluminum alloy [J]. Aluminium Fabrication, 2018,(5): 15-20,37.

[10]尹华伟, 王陈凌, 段金曦, 等. 新型薄壁管耐撞性分析及优化设计[J]. 高压物理学报, 2021, 35(3):100-110.

Yi H W, Wang C L, Duan J X, et al. Crashworthiness analysis and optimization design of new thin-walled tube [J]. Journal of High Pressure Physics, 2021,35(3):100-110.

[11]柳艳杰. 汽车低速碰撞吸能部件的抗撞性能研究[D]. 哈尔滨:哈尔滨工程大学,2012.

Liu Y J. Study on Crashworthiness of Automobile Energy-absorbing Components in Low Speed Collision[D]. Harbin:Harbin Engineering University, 2012.

[12]李晓阳. 低速碰撞下汽车吸能装置的性能研究[D]. 哈尔滨:哈尔滨工程大学,2008.

Li X Y.  Research on Properties of Automobile Energy Absorber under Low Speed Impact[D]. Harbin:Harbin Engineering University, 2008.

[13]Guillow S R, Lu G, Grzebieta R H. Quasi-static axial compression of thin-walled circular aluminium tubes[J]. International Journal of Mechanical Sciences, 2001, 43(9):2103-2123.

[14]Avalle M, Chiandussi G. Optimization of a vehicle energy absorbing steel component with experimental validation [J]. International Journal of Impact Engineering,2007,34(4):843-858.

[15]Chen W G, Wierzbicki T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption[J]. Thin-Walled Structures, 2001, 39(4):287-306.

[16]魏显坤. 轿车保险杠吸能特性分析与试验研究[D]. 重庆:重庆理工大学, 2012. 

Wei X K. Absorption Characteristic Analysis and the Experimental Research of the Car Bumper [D]. Chongqing: Chongqing University of Science and Technology, 2012. 

[17]Yin H F, Wen G L, Hou S J, et al. Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and tubular polygonal tubes [J]. Materials & Design,2011,32(8-9):4449-4460.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9