网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
不同分散角的下压点分散数控渐近成形轨迹生成
英文标题:Trajectory generation on decentralized CNC incremental forming of depression point under different dispersion angles
作者:李彩云 冯辉 郭国彬 黄松 申俊 
单位:(成都飞机工业(集团)有限责任公司 四川 成都 610092) 
关键词:下压点分散轨迹 分散角 最小厚度 表面质量 轮廓精度 
分类号:TG335.5
出版年,卷(期):页码:2023,48(6):84-90
摘要:

 针对采取下压点分散轨迹对板材进行加工时下压点分散角度不明确的问题,分析了在分散角分别为2°、5°和10°时下压点分散轨迹成形的板材质量,并采用有限元分析软件ANSYS和后处理软件LS-PrePost对该条件下的板材成形过程进行了分析。结果表明:在2°、5°和10°分散角的下压点分散轨迹下成形的板材,其最小厚度值大致相等,且板材的最小厚度均位于最底层的成形区;分散角为2°的下压点分散轨迹下成形板材的表面质量最差,分散角为5°的质量次之,分散角为10°的质量最好。有限元分析和成形实验结果表明:分散角为2°时成形板材的Z向偏差最大值和平均值均最大,轮廓精度最低;分散角为5°的Z向偏差最大值和平均值均居中,轮廓精度也居中;分散角为10°的Z向偏差最大值与平均值均最小,轮廓精度最高。

 Aiming at the problem that the dispersion angle of the depression point was not clear when the dispersion trajectory of the depression point was used to process the plate, the quality of the plate formed by the dispersion trajectory of the depression point was analyzed at the dispersion angle of 2°, 5° and 10° respectively, and the forming process of the plate was analyzed by finite element analysis software ANSYS and post-processing software LS-PrePost. The results show that the minimum thickness values of the plate formed under the dispersion trajectory of the depression point at dispersion angles of 2°, 5° and 10° are approximately equal, and the thinnest thickness of the plate is located in the bottom forming area. Among them, the surface quality of the plate after forming is the worst under the dispersion trajectory of depression point with dispersion angle of 2°, followed by that with dispersion angle of 5°, and the best with dispersion angle of 10°. In addition, finite element analysis and forming experiments show that when the dispersion angle is 2°, the maximum value and average value of the Z-direction deviation of the formed plate are the largest, and the contour accuracy is the lowest. For dispersion angle of 5°, the maximum value and average value of the Z-direction deviation are both in the middle, and the contour accuracy is also in the middle. For dispersion angle of 10°, the maximum value and average value of the Z-direction deviation are the smallest, and the contour accuracy is the highest.

基金项目:
作者简介:
李彩云(1994-),女,硕士,工程师
参考文献:

 
[1]冯辉, 郑博, 谢云, 等.基于工具头往复运动加工的数控渐进成形轨迹生成
[J].锻压技术, 2021, 46(12):117-121.


Feng H, Zheng B, Xie Y, et al. CNC incremental forming trajectory generation based on reciprocating movement machining of tool head
[J].Forging & Stamping Technology,2021, 46(12):117-121.


[2]Tisza M. General overview of sheet incremental forming
[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2012, 55(1):113-119.


[3]姜志宏, 彭杰, 姜晓锋, 等. 金属板材数控单点渐进成形表面质量的实验研究
[J]. 热加工工艺, 2019, 48(15):26-29.

Jiang Z H, Peng J, Jiang X F, et al. Experimental research on surface quality of CNC single point incremental forming of metal sheet
[J]. Hot Working Technology, 2019, 48(15):26-29.


[4]Xiao D X, Zhu H. Finite element analysis of the double sided incremental forming of the bidirectional convex features
[J]. Machine Tool and Hydraulics, 2020, 48(6):36-40.


[5]Liu Z B, Daniel W J T, Li Y L, et al. Multi-pass deformation design for incremental sheet forming: Analytical modeling, finite element analysis and experimental validation
[J]. Journal of Materials Processing Technology, 2014, 214(3):620-634.


[6]赵仕宇, 周超, 詹艳然. 5052铝合金薄板数控渐进成形制件表面质量分析
[J]. 塑性工程学报, 2018, 25(6):34-40.

Zhao S Y, Zhou C, Zhan Y R. Surface quality analysis of CNC incremental forming of 5052 aluminum alloy sheet
[J]. Journal of Plastic Engineering,2018, 25(6):34-40.


[7]鲁世红, 付婧颐, 丁腾飞, 等.金属板料数控渐进成形工艺的研究现状
[J]锻压技术, 2022, 47(10):1-11.

Lu S H, Fu J Y, Ding T F, et al. Research status of numerical control progressive forming process for sheet metal
[J]. Forging & Stamping Technology, 2022, 47(10):1-11.


[8]Ambrogio G, Costantino I, De N L, et al. Influence of some relevant process parameters on the dimensional accuracy in incremental forming: A numerical and experimental investigation
[J]. Journal of Materials Processing Technology, 2004, 153-154(1):501-507.


[9]Joost D, Yasemin T, Alex S, et al. Experimental study on force measurements for single point incremental forming
[J]. Journal of Materials Processing Technology, 2007, 189(1-3):65-72.


[10]崔震, 高霖, 陆启建. 复杂钣金零件渐进成形方法
[J]. 机械工程学报, 2007,(12):235-239.

Cui Z, Gao L, Lu Q J. Incremental forming method of complex sheet metal parts
[J]. Journal of Mechanical Engineering, 2007,(12):235-239.


[11]Moser N, Zhang Z, Ren H, et al. Effective forming strategy for double-sided incremental forming considering in-plane curvature and tool direction
[J]. CIRP Annals-Manufacturing Technology, 2016, 65(1):265-268.


[12]谭富星, 李明哲, 蔡中义. 带孔网板数字化多点成形过程中拉裂缺陷的有限元分析
[J].机械工程学报, 2008, 44(6):120-124.

Tan F X, Li M Z, Cai Z Y. Finite element analysis of fractures in the process of digital multi-point forming for retiary sheet metal
[J]. Journal of Mechanical Engineering, 2008, 44(6):120-124.


[13]李华溢, 朱虎, 刘一波, 等. 数控渐进成形下压点分散的等高线成形轨迹生成
[J]. 机床与液压, 2015, 43(17):32-34.

Li H Y, Zhu H, Liu Y B, et al. Generation of contour forming trajectories for pressure points scattered in numerical control progressive forming
[J]. Machine Tool and Hydraulics, 2015, 43(17):32-34.


[14]刘滢. 异形板材件数控渐进成形方法研究
[D]. 沈阳:沈阳航空航天大学, 2018.

Liu Y. Research on CNC Incremental Forming Method of Special-Shaped Sheet Metal Parts
[D]. Shenyang: Shenyang Aerospace University, 2018.

(上接第41页)


[2]Peng H, Chen C, Zhang H Y, et al. Recent development of improved clinching process
[J]. The International Journal of Advanced Manufacturing Technology,2020,110:3169-3199.


[3]Abe Y, Kato T, Mori K, et al. Mechanical clinching of ultrahigh strength steel sheets and strength of joints
[J]. Journal of Materials Processing Technology,2014,214(10):2112-2118.


[4]单丰武,杨海,王付才,等.5052H32铝合金薄板自冲铆接和无铆连接对比研究
[J].锻压技术,2021,46(5):101-108.

Shan F W, Yang H, Wang F C.et al. Comparative study on self-piercing riveting and clinching for 5052H32 aluminum alloy sheet
[J]. Forging & Stamping Technology,2021,46(5):101-108.


[5]He X C. Clinching for sheet materials
[J]. Science and Technology of Advanced Materials,2017,18(1):381-405.


[6]王保中. 钢铝异质薄板无铆连接成形接头缺陷研究
[D].长春:长春工业大学,2021.

Wang B Z. Study on the Defects of Clinch Forming Joint of Steel Aluminum Heterogeneous Sheet
[D]. Changchun: Changchun University of Technology, 2021.


[7]Zhang X G, Chen C. Experimental investigation of joining aluminumalloy sheets by stepped mechanical clinching
[J]. Journal of Materials Research and Technology,2022,19:566-577.


[8]Ren X Q, Chen C, Ran X K, et al. Effects of friction factor on mechanical performance of the AA5182 clinched joint
[J]. The International Journal of Advanced Manufacturing Technology,2022, 120: 1831-1841. 


[9]Peng H, Chen C,Li H J,et al. Joining thin-walled structures without protuberance by two-strokes flattening clinching process
[J]. The International Journal of Advanced Manufacturing Technology,2021,116:1213-1223. 


[10]Sabra A M K, Mukesh K J. Die-less clinching process and joint strength of AA7075 aluminum joints
[J]. Thin-Walled Structures,2017,120:421-431.


[11]杨程,姚杰,牛艳,等.钢铝无铆连接疲劳寿命分析
[J]. 塑性工程学报,2021,28(1): 154-162.

 Yang C, Yao J, Niu Y, et al. Fatigue life analysis of steel-aluminum non-rivet connection
[J]. Journal of Plasticity Engineering, 2021,28 (1): 154-162.


[12]李奇涵, 孟楷博, 韩小亨,等. 基于Kriging模型的钢铝异质板料无铆钉铆接结构工艺参数优化
[J]. 锻压技术,2022,47(1):36-42.

Li Q H, Meng K B, Han X H, et al. Optimization on structural process parameters in clinching for steel-aluminum heterogeneous sheets based on Kriging model
[J]. Forging & Stamping Technology, 2022,47 (1): 36-42.


[13]韩善灵, 姜浩然, 刘娟,等. 成形速度及温度对无铆冲压连接工艺的影响
[J].机械制造,2018,47(1):14-18.

Han S L, Jiang H R, Liu J, et al. Effects of forming speed and temperature on clinching technology
[J]. Machine Building & Automation, 2018,47(1):14-18.


[14]GB/T 2649—1989,焊接接头机械性能试验取样方法
[S].

GB/T 2649—1989, Methods of sampling for mechanical properties tests of welded joint
[S].


[15]芦跃峰.异种金属薄板无铆连接数值模拟及实验研究
[D]. 秦皇岛:燕山大学,2021.

Lu Y F. Numerical Simulation and Experimental Study on Mechanical Clinching of Dissimilar Metal Sheets
[D]. Qinhuangdao: Yanshan University, 2021.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9