网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于低压浇注及协调施压的车轮液态模锻模具设计
英文标题:Mold design on wheel liquid die forging based on low pressure casting and coordinated pressing
作者:杨茜1 2 尹甜甜3 
单位:(1.河南科技大学 材料科学与工程学院 河南 洛阳 471023  2.有色金属共性技术河南省协同创新中心 河南 洛阳 471023  3.开封大学 机械与汽车工程学院 河南 开封 475004) 
关键词:液态模锻 车轮 定容浇注 协调施压 二次脱模 
分类号:TG316
出版年,卷(期):页码:2023,48(6):171-175
摘要:

 对汽车车轮的液态模锻工艺进行了分析,针对由于壁厚不均匀导致热节而造成的局部疏松、冷隔、气孔及热应力等缺陷问题,提出了一种协调施压成形方案,并说明了模具的结构特征和工艺流程,介绍了新工艺的特点和应用。通过对坯料分区施压,实现了成形时模具压下量与坯料收缩量互相匹配,提高了材料的组织均匀性;利用低压浇注系统进行定容封闭浇注,可简化工艺、优化工作环境、防止坯料氧化;通过环槽配合结构和双弹簧封堵协调机构设计,使施压零件和封堵零件兼具顶出功能,实现了制件的可靠脱模,并可降低对成形设备输出动作的要求。所制定的模具结构简单紧凑,制件材料利用率高,制件质量好,适合车轮低压铸造工艺的升级换代,具有较高的应用价值。

 The liquid die forging technology of automobile wheels was analyzed, and aiming at the defects of local porosity, cold shuts, pores and thermal stress caused by hot spots due to nonuniform wall thickness, a coordinated pressing forming scheme was proposed. Then, the structural characteristics and process flow of the mold were discussed, and the characteristics and application of the new process were introduced. Furthermore, by applying pressure to the billet in different zones, the mutual matching between mold pressing amount and billet shrinkage during forming was realized, and the uniformity of the material structure was improved. In addition, the use of a low-pressure pouring system for constant volume closed pouring could simplify the process, optimize the working environment and prevent the billet oxidation. Through the design of ring groove matching structure and dual spring sealing coordination mechanism, the pressure applying parts and sealing parts had both ejection function, which realized the reliable demoulding of parts and reduced the requirements for the output action of forming equipment. The results show that the formulated mold has a simple and compact structure, a high material utilization rate and a good product quality, which is suitable for the upgrading of the wheel low-pressure casting process and has high application value.

基金项目:
河南省重点研发与推广专项(科技攻关)项目(232102220039)
作者简介:
杨茜(1982-),女,博士,讲师
参考文献:

 
[1]陈微, 官英平, 王振华. 高钛6061铝合金轮毂精锻成形的微观组织模拟
[J]. 塑性工程学报, 2017, 24 (1): 1-8.


Chen W, Guan Y P, Wang Z H. Numerical simulation of microstructure evolution for precision forging of high titanium 6061 aluminum alloy wheels
[J]. Journal of Plasticity Engineering, 2017, 24 (1): 1-8.


[2]杨兴旺, 陶志伟, 袁凯, 等. 基于响应面法的喷射成形7055铝合金飞机轮毂锻造工艺优化
[J]. 锻压技术, 2022, 47 (10): 23-28.

Yang X W, Tao Z W, Yuan K, et al. Optimization on forging process for spray formed 7055 aluminum alloy aircraft wheel hub based on response surface method
[J]. Forging & Stamping Technology, 2022, 47 (10): 23-28.


[3]周杰, 李世山, 张谦, 等. 复杂深筒铝合金轮毂锻件精密成形工艺及模具技术
[J]. 锻压技术, 2021, 46 (9): 270-277.

Zhou J, Li S S, Zhang Q, et al. Precision forming process and die technology on complex deep cylindrical aluminum alloy wheel hub forgings
[J]. Forging & Stamping Technology, 2021, 46 (9): 270-277.


[4]代颖辉. 挤压铸造A356铝合金重载车轮的模具设计
[J]. 铸造, 2016, 65 (2): 155-157, 161.

Dai Y H. Mould design for A356 aluminum alloy heavy load wheels by squeeze casting
[J]. Foundry, 2016, 65 (2): 155-157, 161.


[5]石家平, 余成远. 铝合金车轮制造技术及发展趋势探讨
[J]. 世界有色金属, 2019, 525(9): 174, 176.

Shi J P, Yu C Y. Discussion on manufacturing technology and development trend of aluminum alloy wheel
[J]. World Nonferrous Metals, 2019, 525(9): 174, 176.


[6]周喆. 铝合金车轮制造技术及发展趋势
[J]. 世界有色金属, 2017,481 (13): 231-232.

Zhou Z. Manufacturing technology and development trend of aluminum alloy wheels
[J]. World Nonferrous Metals, 2017,481 (13): 231-232.


[7]庞午骥, 曹振伟, 万金华. 铝合金车轮制造技术及发展趋势
[J]. 铝加工, 2017,235 (2): 4-7.

Pang W J, Cao Z W, Wan J H. Manufacturing technology and development trend of aluminum wheel
[J]. Aluminium Fabrication, 2017,235 (2): 4-7.


[8]周振, 卢德宏, 李贞明, 等. 低压铸造铝合金轮毂的研究现状
[J]. 中国铸造装备与技术, 2022, 57 (2): 58-64.

Zhou Z, Lu D H, Li Z M, et al. Research status of low pressure casting aluminum alloy wheel hub
[J]. China Foundry Machinery & Technology, 2022, 57 (2): 58-64.


[9]任凯, 冯立超, 孙立, 等. 低压铸造铝合金轮毂的研究现状
[J]. 热加工工艺, 2021, 50 (9): 10-15.

Ren K, Feng L C, Sun L, et al. Research status of low pressure casting aluminum alloy wheels
[J]. Hot Working Technology, 2021, 50 (9): 10-15.


[10]邢书明, 郭莉军, 刘文鑫, 等. 压力成形轮形件的非均质现象
[J]. 北京交通大学学报, 2015, 39 (4): 1-6.

Xing S M, Guo L J, Liu W X, et al. Inhomogenous of wheel under pressure forming process
[J]. Journal of Beijing Jiaotong University, 2015, 39 (4): 1-6.


[11]赖华清, 范宏训. 汽车铝合金轮毂的成形工艺
[J]. 金属成形工艺, 2002, 20 (6): 38-40, 59.

Lai H Q, Fan H X. Forming technology of aluminium hub for automobile
[J]. Metal Forming Technology, 2002, 20 (6): 38-40, 59.


[12]罗守靖, 陈炳光, 齐丕骧. 液态模锻与挤压铸造技术
[M]. 北京: 化学工业出版社, 2007.

Luo S J, Chen B G, Qi P X. Liquid Die Forging and Squeeze Casting Technology
[M]. Beijing: Chemical Industry Press, 2007.


[13]张立君, 范云波, 赵洁, 等. 挤压铸造重型车辆铝合金轮毂组织和性能研究
[J]. 兵器材料科学与工程, 2020, 43 (5): 112-116.

Zhang L J, Fan Y B, Zhao J, et al. Structure and properties of high-strength aluminum alloy wheel hubs prepared by squeezing casting process
[J]. Ordnance Material Science and Engineering, 2020, 43 (5): 112-116.


[14]马春江, 陈玖新, 葛素静, 等. 挤压铸造重载汽车用铝合金车轮的组织及性能
[J]. 特种铸造及有色合金, 2014, 34 (10): 1063-1065.

Ma C J, Chen J X, Ge S J, et al. Microstructure and mechanical properties of squeezing casting aluminum alloy wheel
[J]. Special Casting & Nonferrous Alloys, 2014, 34 (10): 1063-1065.


[15]姜巨福, 李明星, 王迎. 铝合金挤压铸造技术研究进展
[J]. 中国有色金属学报, 2021, 31 (9): 2313-2329.

Jiang J F, Li M X, Wang Y. Research development of squeeze casting technology of aluminum alloy
[J]. The Chinese Journal of Nonferrous Metals, 2021, 31 (9): 2313-2329.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9