[1]Weiss I, Semiatin S L. Thermomechanical processing of alpha titanium alloys-An overview [J]. Materials Science and Engineering: A,1999, 263(2): 243-256.
[2]Lütjering G, Williams J C. Titanium [M]. Heidelberg: Springer Berlin, 2007.
[3]Sun F, Li J S, Kou H C, et al. Nano-precipitation and tensile properties of Ti60 alloy after exposure at 550 ℃ and 650 ℃ [J]. Materials Science and Engineering: A, 2015, 626: 247-253.
[4]Evans R W, Hull R J, Wilshire B. The effects of alpha-case formation on the creep fracture properties of the high-temperature titanium alloy IMI834 [J]. Journal of Materials Processing Technology,1996, 56(1): 492-501.
[5]Peng W W, Zeng W D, Wang Q J, et al. Characterization of high-temperature deformation behavior of as-cast Ti60 titanium alloy using processing map [J]. Materials Science and Engineering: A, 2013, 571: 116-122.
[6]Williams J C. Alternate materials choices-some challenges to the increased use of Ti alloys [J]. Materials Science and Engineering: A, 1999, 263(2): 107-111.
[7]Wang Q J, Liu J R, Yang R. High temperature titanium alloys: Status and perspective [J]. Journal of Aeronautical Materials, 2014, 34(4): 1-26.
[8]Zhao Z B, Wang Q J, Liu J R, et al. Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60 [J]. Acta Materialia, 2017, 131: 305-314.
[9]蔡建明, 李娟, 田丰, 等. 先进航空发动机用高温钛合金双性能整体叶盘的制造 [J]. 航空制造技术,2019, 62(19): 34-40.
Cai J M, Li J, Tian F, et al. Manufacturing of high temperature titanium alloy dual-property blisk used for advanced aero-engine [J]. Aeronautical Manufacturing Technology, 2019, 62(19): 34-40.
[10]李文彬. 置氢Ti65高温钛合金的变形行为与微观组织演变研究 [D]. 武汉:华中科技大学, 2021.
Li W B. Research on Deformation Behavior and Microstructure Evolution of Hydrogenated Ti65 Alloy [D]. Wuhan:Huazhong University of Science and Technology, 2021.
[11]邓磊, 李文彬, 王新云, 等. 一种基于局部置氢制造钛合金双性能涡轮盘的方法及产品 [P]. 中国: CN201811502569.2,2020.
Deng L, Li W B, Wang X Y, et al. A method and product for manufacturing a titanium alloy dual-performance turbine disk based on local hydrogenation [P]. China: CN201811502569.2,2020.
[12]纪博宇, 李细锋, 李剑飞. 置氢Ti-55钛合金变形本构方程及高温增塑机理研究 [J]. 塑性工程学报,2018, 25(1): 180-186.
Ji B Y, Li X F, Li J F. Constitutive equation and high temperature plasticizing mechanism of hydrogenated Ti-55 titanium alloy [J]. Journal of Plasticity Engineering,2018, 25(1): 180-186.
[13]宗影影. 钛合金置氢增塑机理及其高温变形规律研究 [D]. 哈尔滨:哈尔滨工业大学, 2007.Zong Y Y. Study on the Hydrogen Enhanced Plasticity Mechanism and Deformation Behaviors of Titanium Alloys at High Temperatures [D]. Harbin:Harbin Institute of Technology, 2007.
[14]黄树晖. 置氢钛合金与纯锆高温软化行为及其对锻造变形的影响 [D]. 哈尔滨:哈尔滨工业大学, 2013.
Huang S H. High Temperature Softening Behavior of Hydrogenated Titanium Alloys and Pure Zirconium and its Effect on Forging Deformation [D]. Harbin:Harbin Institute of Technology, 2013.
[15]赵敬伟. 热氢处理对钛合金组织演变及高温变形行为的影响 [D]. 沈阳: 东北大学, 2009.
Zhao J W. Influence of Thermohydrogen Treatment on Microstructural Evolution and High Temperature Deformation Behavior of Titanium Alloys [D]. Shenyang:Northeastern University, 2009.
[16]唐敏. 置氢ZrTiAlV合金的高温变形行为及显微组织演变 [D]. 重庆:重庆大学, 2020.
Tang M. High Temperature Deformation Behavior and Microstructure Evolution of Hydrogenated ZrTiAlV Alloy [D]. Chongqing:Chongqing University, 2020.
[17]Wang K, Li M Q. Characterization of discontinuous yielding phenomenon in isothermal compression of TC8 titanium alloy [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(6): 1583-1588.
[18]Ghasemi E, Zarei-Hanzaki A, Farabi E, et al. Flow softening and dynamic recrystallization behavior of BT9 titanium alloy: A study using process map development [J]. Journal of Alloys and Compounds, 2017, 695: 1706-1718.
[19]Zong Y Y, Huang S H, Feng Y J, et al. Hydrogen induced softening mechanism in near alpha titanium alloy [J]. Journal of Alloys and Compounds, 2012, 541: 60-64.
[20]Jia W J, Zeng W D, Zhou Y G, et al. High-temperature deformation behavior of Ti60 titanium alloy [J]. Materials Science and Engineering: A, 2011, 528(12): 4068-4074.
[21]Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metallurgica, 1966, 14(9): 1136-1138.
[22]Sellars C M, McTegart W J. Hot workability [J]. International Metallurgical Reviews,1972, 17(158): 1-22.
[23]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22-32.
[24]龙帅. 合金热变形行为快速求解方法与应用研究 [D]. 重庆:重庆大学, 2020.
Long S. Research on the Rapid Solution and Analysis Method for Hot Deformation Behavior of Alloys and its Application [D]. Chongqing:Chongqing University, 2020.
[25]Briottet L, Jonas J J, Montheillet F. A mechanical interpretation of the activation energy of high temperature deformation in two phase materials [J]. Acta Materialia, 1996, 44(4): 1665-1672.
[26]Li B, Pan Q L, Yin Z M. Microstructural evolution and constitutive relationship of Al-Zn-Mg alloy containing small amount of Sc and Zr during hot deformation based on Arrhenius-type and artificial neural network models [J]. Journal of Alloys and Compounds, 2014, 584: 406-416.
|