网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于应变补偿的Fe-Mn-Al-C低密度钢等温压缩物理本构方程
英文标题:Physical constitutive equation of Fe-Mn-Al-C low density steel under isothermal compression based on strain compensation
作者:孙建1 2 3 4 5 程锐2 3 4 5 王梓2 3 4 5 李景辉1 黄贞益1 
单位:(1.安徽工业大学 冶金工程学院 安徽 马鞍山 243002  2. 铜陵学院 机械工程学院 安徽 铜陵 244061  3. 工程液压机器人安徽省普通高校重点实验室 安徽 铜陵 244061  4. 安徽省铜基新材料产业共性技术研究中心 安徽 铜陵 244061 5. 铜陵市增材制造重点实验室 安徽 铜陵 244061) 
关键词:低密度钢 等温压缩 应变补偿 物理本构方程 流动应力 
分类号:TG142.1
出版年,卷(期):页码:2023,48(6):214-222
摘要:

 采用Gleeble-1500D热模拟实验机,对Fe-27.51Mn-8.69Al-1.12C低密度钢在变形温度为900~1100 ℃和应变速率为0.01~5 s-1范围内进行热压缩实验,通过实验数据分析了该钢的流动应力曲线特征,建立了考虑应变耦合的物理本构模型,并进行了验证分析。结果表明:变形温度和应变速率等热力学条件对低密度钢的流动应力影响较为显著,高温、低应变速率更有利于低密度钢的再结晶发生;基于峰值应力的低密度钢等温压缩物理本构方程的预测精度较高,其线性拟合相关系数为0.991;基于应变补偿的低密度钢等温压缩物理本构方程能够较好地描述其在热压缩条件下的流动应力变化规律,其相关系数r为0.980,预测值与实验值的平均相对误差AARE为6.9%。

 The thermal compression experiment of Fe-27.51Mn-8.69Al-1.12C low density steel under the temperature of 900-1100 ℃ and the strain rate of 0.01-5 s-1 was carried out by thermal simulation experiment machine Gleeble-1500D, and the rheological stress curves characteristics of the steel were analyzed by the experimental data. Then, the physical constitutive model considering strain coupling was established, and the verification analysis was conducted. The results show that the thermodynamic conditions such as deformation temperature and strain rate have significant effects on the rheological stress of low density steel, and the high temperature and low strain rate are more conducive to the recrystallization of low density steel. The prediction accuracy of physical constitutive equation for low density steel under isothermal compression based on peak stress is high, and the linear fitting correlation coefficient is 0.991. The physical constitutive equation of low density steel under isothermal compression based on strain compensation can better describe the change rule of rheological stress for low density steel under hot compression, the correlation coefficient r is 0.980, and the average relative error AARE between the predicted and experimental values is 6.9%.

基金项目:
孙建(1988-),男,博士研究生,讲师
作者简介:
国家自然科学基金资助项目(51674004,51805002);安徽省高等学校自然科学研究重点项目(2022AH051760);铜陵学院自然科学研究项目(2017tlxy23);国家级本科生创新训练项目(202210383086);铜陵学院大学生科研基金项目(2021tlxydxs099);工程液压机器人安徽普通高校重点实验室开放课题资助(TLXYCHR-O-21YB03);铜陵学院横向科研项目(2023tlxyxdz077)
参考文献:

 
[1]Chen S P, Rana R, Halder A, et al. Current state of Fe-Mn-Al-C low density steels
[J]. Progress in Materials Science, 2017, 89(8):345-391. 



[2]Pierce D T, Field D M, Limmer K R, et al. Hot deformation behavior of an industrially cast large grained low density austenitic steel
[J]. Materials Science and Engineering: A, 2021, 825: 141785-141795.


[3]Xie Z Q, Hui W J, Zhang Y J, et al. Effect of Cu and solid solution temperature on microstructure and mechanical properties of Fe-Mn-Al-C low-density steels
[J].Journal of Materials Research and Technology, 2022,18:1307-1321.


[4]曹晨星,王存宇,张婧,等.冷却速率对奥氏体型FeMnAlC钢组织和性能的影响
[J].钢铁研究学报,2022,34(3):272-279.

Cao C X,Wang C Y,Zhang J,et al. Effect of cooling rate on microstructure and properties of austenitic FeMnAlC steel
[J]. Journal of Iron and Steel Research, 2022,34(3):272-279.


[5]Kwok T W J, Rahman K M, Vorontsov V A, et al. Strengthening κ-carbide steels using residual dislocation content
[J]. Scripta Materialia, 2022, 213: 114626-114631.


[6]Hu S F, Zheng Z B, Yang W P, et al. Fe-Mn-C-Al low-density steel for structural materials: A review of alloying, heat treatment, microstructure, and mechanical properties
[J]. Steel Research International, 2022, 93(9): 2200191-2200204.


[7]Wei L L, Gao G H, Kim J, et al. Ultrahigh strength-high ductility 1 GPa low density austenitic steel with ordered precipitation strengthening phase and dynamic slip band refinement
[J]. Materials Science and Engineering: A, 2022, 838: 142829-142839.


[8]Yoo J D, Hwang S W, Park K T. Origin of extended tensile ductility of a Fe-28Mn-10Al-1C steel
[J]. Metallurgical and Materials Transactions A, 2009, 40: 1520-1523.


[9]Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels
[J]. Steel Research International, 2006, 77(9-10): 627-633.


[10]Li G Q, Shen Y F, Jia N, et al. Microstructural evolution and mechanical properties of a micro-alloyed low-density δ-TRIP steel
[J]. Materials Science and Engineering: A, 2022, 848: 143430-143446.


[11]Li Z, Wang Y, Cheng X, et al. The effect of Ti-Mo-Nb on the microstructures and tensile properties of a Fe-Mn-Al-C austenitic steel
[J]. Materials Science and Engineering: A, 2020, 780: 139220-139229.


[12]Moon J, Jo H H, Park S J, et al. Ti-bearing lightweight steel with large high temperature ductility via thermally stable multi-phase microstructure
[J]. Materials Science and Engineering: A, 2021, 808: 140954-140962.


[13]Moon J, Park S J, Lee C, et al. Microstructure evolution and age-hardening behavior of microalloyed austenitic Fe-30Mn-9Al-0.9C light-weight steels
[J]. Metallurgical and Materials Transactions A, 2017, 48(10): 4500-4510.


[14]Ramos J, Piamba J F, Sanchez H, et al. Mssbauer and XRD characterization of the effect of heat treatment and the tribological test on the physical and mechanical properties of a Fe-Mn-Al-C alloy
[J]. Hyperfine Interactions, 2017, 238(1): 1-8.


[15]Song N, Zhao W M, Dong L S, et al. Effect of solution treatment temperature on microstructure and properties of Fe-0.72Mn-3.7Al-0.53C low-density cast steel
[J]. Metals, 2022, 12(8): 1290-1301.


[16]Zhang J L, Hu C H, Zhang Y H, et al. Microstructures, mechanical properties and deformation of near-rapidly solidified low-density Fe-20Mn-9Al-1.2 C-xCr steels
[J]. Materials & Design, 2020, 186: 108307-108320.


[17]杨富强,宋仁伯,李亚萍,等.退火温度对冷轧Fe-Mn-Al-C低密度钢性能的影响
[J].材料研究学报,2015,29(2):108-114.

Yang F Q, Song R B, Li Y P, et al. Effect of annealing temperature on properties of cold rolled Fe-Mn-Al-C low density steel
[J]. Chinese Journal of Materials Research,2015,29(2):108-114.


[18]Lee J, Kim H, Park S J, et al. Correlation between macroscale tensile properties and small-scale intrinsic mechanical behavior of Mo-added Fe-Mn-Al-C lightweight steels
[J]. Materials Science and Engineering: A, 2019, 768: 138460-138469.


[19]Li Y P, Song R B, Wen E D, et al. Hot deformation and dynamic recrystallization behavior of austenite-based low-density Fe-Mn-Al-C steel
[J]. Acta Metallurgica Sinica, 2016, 29(5): 441-449.


[20]Liu D G, Ding H, Cai M H, et al. Hot deformation behavior and processing map of a Fe-11Mn-10Al-0.9C duplex low-density steel susceptible to κ-carbides
[J]. Journal of Materials Engineering and Performance, 2019, 28(8): 5116-5126.


[21]Kalantari A R, Zarei-Hanzaki A, Abedi H R, et al. The high temperature deformation behavior of a Triplex (ferrite+ austenite+ martensite) low density steel
[J]. Journal of Materials Research and Technology, 2021, 13: 1388-1401.


[22]Sun J, Li J H, Wang P, et al. Hot deformation behavior, dynamic recrystallization and processing map of Fe-30Mn-10Al-1C low-density steel
[J]. Transactions of the Indian Institute of Metals,2022, 75:699-716.


[23]魏海莲,周红伟,潘红波.微合金化高强钢的热变形行为及物理本构方程
[J].锻压技术,2022,47(5):217-225.

Wei H L, Zhou H W, Pan H B. Hot deformation behavior and physical constitutive equation of microalloyed high strength steel
[J]. Forging & Stamping Technology, 2022,47(5):217-225.


[24]Wan P, Yu H X, Li F, et al. Hot deformation behaviors and process parameters optimization of low-density high-strength Fe-Mn-A-C alloy steel
[J]. Metals and Materials International, 2022, 28(10): 2498-2512.


[25]孙建,黄贞益,李景辉,等.Fe-28Mn-9Al-1C轻质合金钢的热变形行为
[J].材料热处理学报,2022,43(3):142-150.

Sun J, Huang Z Y, Li J H, et al. Hot deformation behavior of Fe-28Mn-9Al-1C lightweight alloy steel
[J]. Transactions of Materials and Heat Treatment,2022,43(3):142-150.


[26]Liu D G, Ding H, Hu X, et al. Dynamic recrystallization and precipitation behaviors during hot deformation of a k-carbide-bearing multiphase Fe-11Mn-10Al-0.9C light weight steel
[J]. Materials Science and Engineering A,2020,772:138682-138693.


[27]张婧,王存宇,王辉,等.奥氏体型Fe30Mn9Al0.9C低密度钢的热变形行为研究
[J].钢铁研究学报,2023,35(4):434-442.

Zhang J, Wang C Y, Wang H, et al. Study on thermal deformation behavior of austenitic Fe30Mn9Al0.9C low density steel
[J]. Journal of Iron and Steel Research,2023,35(4):434-442.


[28]Frost H J, Ashby M F. Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics
[M]. Oxford: Pergamon Press,1982.


[29]Yu R H, Wang P C, Li G S, et al. Correction and modeling of flow stress during hot deformation of 7055 aluminum alloy
[J]. Journal of Materials Engineering and Performance, 2022,31(8):6870-6879. 


[30]Churyumov A Y, Kazakova A A, Pozdniakov A V, et al. Investigation of hot deformation behavior and microstructure evolution of lightweight Fe-35Mn-10Al-1C steel
[J].Metals, 2022, 12(5): 831-844.


[31]魏海莲,邓笑举,潘红波,等.基于蠕变理论的钒和铌微合金化中碳钢的物理本构方程
[J].塑性工程学报,2022,29(9):207-215.

Wei H L, Deng X J, Pan H B, et al. Physical constitutive equation of vanadium and niobium microalloyed medium carbon steel based on creep theory
[J]. Journal of Plasticity Engineering, 2022,29(9):207-215.


[32]Cai Z M, Ji H C, Pei W C, et al. Hot workability, constitutive model and processing map of 3Cr23Ni8Mn3N heat resistant steel
[J]. Vacuum, 2019, 165: 324-336.


[33]Yu R H, Li X, Li W J, et al. Application of four different models for predicting the high-temperature flow behavior of TG6 titanium alloy
[J]. Materials Today Communications, 2021, 26: 102004-102016.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9