[1]Chen S P, Rana R, Halder A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Progress in Materials Science, 2017, 89(8):345-391.
[2]Pierce D T, Field D M, Limmer K R, et al. Hot deformation behavior of an industrially cast large grained low density austenitic steel [J]. Materials Science and Engineering: A, 2021, 825: 141785-141795.
[3]Xie Z Q, Hui W J, Zhang Y J, et al. Effect of Cu and solid solution temperature on microstructure and mechanical properties of Fe-Mn-Al-C low-density steels [J].Journal of Materials Research and Technology, 2022,18:1307-1321.
[4]曹晨星,王存宇,张婧,等.冷却速率对奥氏体型FeMnAlC钢组织和性能的影响 [J].钢铁研究学报,2022,34(3):272-279.
Cao C X,Wang C Y,Zhang J,et al. Effect of cooling rate on microstructure and properties of austenitic FeMnAlC steel [J]. Journal of Iron and Steel Research, 2022,34(3):272-279.
[5]Kwok T W J, Rahman K M, Vorontsov V A, et al. Strengthening κ-carbide steels using residual dislocation content [J]. Scripta Materialia, 2022, 213: 114626-114631.
[6]Hu S F, Zheng Z B, Yang W P, et al. Fe-Mn-C-Al low-density steel for structural materials: A review of alloying, heat treatment, microstructure, and mechanical properties [J]. Steel Research International, 2022, 93(9): 2200191-2200204.
[7]Wei L L, Gao G H, Kim J, et al. Ultrahigh strength-high ductility 1 GPa low density austenitic steel with ordered precipitation strengthening phase and dynamic slip band refinement [J]. Materials Science and Engineering: A, 2022, 838: 142829-142839.
[8]Yoo J D, Hwang S W, Park K T. Origin of extended tensile ductility of a Fe-28Mn-10Al-1C steel [J]. Metallurgical and Materials Transactions A, 2009, 40: 1520-1523.
[9]Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels [J]. Steel Research International, 2006, 77(9-10): 627-633.
[10]Li G Q, Shen Y F, Jia N, et al. Microstructural evolution and mechanical properties of a micro-alloyed low-density δ-TRIP steel [J]. Materials Science and Engineering: A, 2022, 848: 143430-143446.
[11]Li Z, Wang Y, Cheng X, et al. The effect of Ti-Mo-Nb on the microstructures and tensile properties of a Fe-Mn-Al-C austenitic steel [J]. Materials Science and Engineering: A, 2020, 780: 139220-139229.
[12]Moon J, Jo H H, Park S J, et al. Ti-bearing lightweight steel with large high temperature ductility via thermally stable multi-phase microstructure [J]. Materials Science and Engineering: A, 2021, 808: 140954-140962.
[13]Moon J, Park S J, Lee C, et al. Microstructure evolution and age-hardening behavior of microalloyed austenitic Fe-30Mn-9Al-0.9C light-weight steels [J]. Metallurgical and Materials Transactions A, 2017, 48(10): 4500-4510.
[14]Ramos J, Piamba J F, Sanchez H, et al. Mssbauer and XRD characterization of the effect of heat treatment and the tribological test on the physical and mechanical properties of a Fe-Mn-Al-C alloy [J]. Hyperfine Interactions, 2017, 238(1): 1-8.
[15]Song N, Zhao W M, Dong L S, et al. Effect of solution treatment temperature on microstructure and properties of Fe-0.72Mn-3.7Al-0.53C low-density cast steel [J]. Metals, 2022, 12(8): 1290-1301.
[16]Zhang J L, Hu C H, Zhang Y H, et al. Microstructures, mechanical properties and deformation of near-rapidly solidified low-density Fe-20Mn-9Al-1.2 C-xCr steels [J]. Materials & Design, 2020, 186: 108307-108320.
[17]杨富强,宋仁伯,李亚萍,等.退火温度对冷轧Fe-Mn-Al-C低密度钢性能的影响 [J].材料研究学报,2015,29(2):108-114.
Yang F Q, Song R B, Li Y P, et al. Effect of annealing temperature on properties of cold rolled Fe-Mn-Al-C low density steel [J]. Chinese Journal of Materials Research,2015,29(2):108-114.
[18]Lee J, Kim H, Park S J, et al. Correlation between macroscale tensile properties and small-scale intrinsic mechanical behavior of Mo-added Fe-Mn-Al-C lightweight steels [J]. Materials Science and Engineering: A, 2019, 768: 138460-138469.
[19]Li Y P, Song R B, Wen E D, et al. Hot deformation and dynamic recrystallization behavior of austenite-based low-density Fe-Mn-Al-C steel [J]. Acta Metallurgica Sinica, 2016, 29(5): 441-449.
[20]Liu D G, Ding H, Cai M H, et al. Hot deformation behavior and processing map of a Fe-11Mn-10Al-0.9C duplex low-density steel susceptible to κ-carbides [J]. Journal of Materials Engineering and Performance, 2019, 28(8): 5116-5126.
[21]Kalantari A R, Zarei-Hanzaki A, Abedi H R, et al. The high temperature deformation behavior of a Triplex (ferrite+ austenite+ martensite) low density steel [J]. Journal of Materials Research and Technology, 2021, 13: 1388-1401.
[22]Sun J, Li J H, Wang P, et al. Hot deformation behavior, dynamic recrystallization and processing map of Fe-30Mn-10Al-1C low-density steel [J]. Transactions of the Indian Institute of Metals,2022, 75:699-716.
[23]魏海莲,周红伟,潘红波.微合金化高强钢的热变形行为及物理本构方程 [J].锻压技术,2022,47(5):217-225.
Wei H L, Zhou H W, Pan H B. Hot deformation behavior and physical constitutive equation of microalloyed high strength steel [J]. Forging & Stamping Technology, 2022,47(5):217-225.
[24]Wan P, Yu H X, Li F, et al. Hot deformation behaviors and process parameters optimization of low-density high-strength Fe-Mn-A-C alloy steel [J]. Metals and Materials International, 2022, 28(10): 2498-2512.
[25]孙建,黄贞益,李景辉,等.Fe-28Mn-9Al-1C轻质合金钢的热变形行为 [J].材料热处理学报,2022,43(3):142-150.
Sun J, Huang Z Y, Li J H, et al. Hot deformation behavior of Fe-28Mn-9Al-1C lightweight alloy steel [J]. Transactions of Materials and Heat Treatment,2022,43(3):142-150.
[26]Liu D G, Ding H, Hu X, et al. Dynamic recrystallization and precipitation behaviors during hot deformation of a k-carbide-bearing multiphase Fe-11Mn-10Al-0.9C light weight steel [J]. Materials Science and Engineering A,2020,772:138682-138693.
[27]张婧,王存宇,王辉,等.奥氏体型Fe30Mn9Al0.9C低密度钢的热变形行为研究 [J].钢铁研究学报,2023,35(4):434-442.
Zhang J, Wang C Y, Wang H, et al. Study on thermal deformation behavior of austenitic Fe30Mn9Al0.9C low density steel [J]. Journal of Iron and Steel Research,2023,35(4):434-442.
[28]Frost H J, Ashby M F. Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics [M]. Oxford: Pergamon Press,1982.
[29]Yu R H, Wang P C, Li G S, et al. Correction and modeling of flow stress during hot deformation of 7055 aluminum alloy [J]. Journal of Materials Engineering and Performance, 2022,31(8):6870-6879.
[30]Churyumov A Y, Kazakova A A, Pozdniakov A V, et al. Investigation of hot deformation behavior and microstructure evolution of lightweight Fe-35Mn-10Al-1C steel [J].Metals, 2022, 12(5): 831-844.
[31]魏海莲,邓笑举,潘红波,等.基于蠕变理论的钒和铌微合金化中碳钢的物理本构方程 [J].塑性工程学报,2022,29(9):207-215.
Wei H L, Deng X J, Pan H B, et al. Physical constitutive equation of vanadium and niobium microalloyed medium carbon steel based on creep theory [J]. Journal of Plasticity Engineering, 2022,29(9):207-215.
[32]Cai Z M, Ji H C, Pei W C, et al. Hot workability, constitutive model and processing map of 3Cr23Ni8Mn3N heat resistant steel [J]. Vacuum, 2019, 165: 324-336.
[33]Yu R H, Li X, Li W J, et al. Application of four different models for predicting the high-temperature flow behavior of TG6 titanium alloy [J]. Materials Today Communications, 2021, 26: 102004-102016.
|