[1]Cabrera E S P,Guérin J D,Barbera-Sosa J G L, et al. Friction correction of austenite flow stress curves determined under axisymmetric compression conditions [J]. Experimental Mechanics, 2019, 35: 679-693.
[2]魏明刚, 龚斌, 闵武, 等. 热变形对35CrMo钢淬火马氏体晶体学特征的影响 [J]. 锻压技术, 2022, 47(8): 249-254.
Wei M G, Gong B, Min W, et al. Influence of hot deformation on crystallographic characteristics of quenched martensite for 35CrMo steel [J]. Forging & Stamping Technology, 2022, 47(8): 249-254.
[3]Decker R F, Floreen S. Maraging Steels the First 30 Years [M]. Maraging Steels: Recent Developments and Applications,1988.
[4]姜越, 尹钟大, 朱景川, 等. 马氏体时效不锈钢的发展现状 [J]. 特殊钢, 2003, 24(3): 1-5.
Jiang Y, Yin Z D, Zhu J C, et al. Development status of maraging stainless steel [J]. Special Steel, 2003, 24(3): 1-5.
[5]戴彦璋,韩顺,厉勇,等.C250钢执为形奥氏体静态再结晶行为 [J].锻压技术,2022,47(11):231-238.
Dai Y Z, Han S, Li Y, et al. Static recrystallization behavior on thermal deformation austenite for C250 steel [J]. Forging & Stamping Technology, 2022,47(11):231-238.
[6]黄烁, 王磊, 张北江,等.GH4706合金的动态再结晶与晶粒控制 [J]. 材料研究学报, 2014, 28(5): 362-370.
Huang S, Wang L, Zhang B J, et al. Dynamic recrystallization behavior and grain size control of GH4706 superalloy [J]. Chinese Journal of Materials Research, 2014, 28(5):362-370.
[7]Jue W, Zhai S C. Dynamic recrystallization kinetics of 690 alloy during hot compression of double-cone samples [J]. Journal of Materials Engineering and Performance, 2017, 26(3):1433-1443.
[8]Wusatowska-Sarnek A M, Miura H, Sakai T. Nucleation and microtexture development under dynamic recrystallization of copper [J]. Materials Science & Engineering A, 2002, 323(1):177-186.
[9]陈舒恬, 王珏, 胡定祥. GH738合金双锥试样热压缩行为 [J]. 材料热处理学报, 2016, 37(12):80-85.
Chen S T, Wang J, Hu D X. Hot compression behaviors of double cone samples of GH738 alloy [J]. Transactions of Materials and Heat Treatment, 2016, 37(12):80-85.
[10]Beladi H, Cizek P, Hodgson P D. Dynamic recrystallization of austenite in Ni-30 pct Fe model alloy: Microstructure and texture evolution [J].Metallurgical and Materials Transactions A, 2009, 40: 1175-1189.
[11]Hossein B, Pavel C, Hodgson P D. On the characteristics of substructure development through dynamic recrystallization [J]. Acta Materialia, 2010, 58(9):3531-3541.
[12]Jorge-Badiola D, Iza-Mendia A, Gutiérrez I. Study by EBSD of the development of the substructure in a hot deformed 304 stainless steel [J]. Materials Science & Engineering A, 2004, 394(1):445-454.
[13]Srinivasa N, Prasad Y V R K. Hot working characteristics of nimonic 75, 80A and 90 superalloys: A comparison using processing maps [J]. Journal of Materials Processing Technology, 1995, 51(1):171-192.
[14]Zhang C, Zhang L W, Shen W F, et al. Characterization of hot deformation behavior of hastelloy C-276 using constitutive equation and processing map [J]. Journal of Materials Engineering and Performance, 2015, 24(1):149-157.
[15]Bi Z N, Zhang M C, Dong J X, et al. A new prediction model of steady state stress based on the influence of the chemical composition for nickel-base superalloys [J].Materials Science and Engineering A, 2010, 27: 4373-4382.
[16]Wang J, Dong J, Zhang M, et al. Hot working characteristics of nickel-base superalloy 740H during compression [J]. Materials Science & Engineering A, 2013, 566: 61-70.
|