网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
1Cr10Co6MoVNbN航空用不锈钢的热变形行为
英文标题:Thermal deformation behavior of aerospace stainless steel 1Cr10Co6MoVNbN
作者:白青青1 2 胡进3 刘庭耀1 2 王婀娜1 2 宋令玺1 2 
单位:(1.成都先进金属材料产业技术研究院股份有限公司 四川 成都 610303  2.海洋装备用金属材料及其应用国家重点实验室 辽宁 鞍山 114009 3.攀钢集团江油长城特殊钢有限公司 四川 江油 621700) 
关键词:1Cr10Co6MoVNbN不锈钢 热变形 本构方程 再结晶 临界应力 临界应变 
分类号:TG142.73
出版年,卷(期):页码:2023,48(6):238-244
摘要:

 采用Gleeble-3500热模拟实验机,研究了1Cr10Co6MoVNbN不锈钢在温度为800~1100 ℃、应变速率为0.01~10 s-1下的热变形行为,得到了其应力-应变曲线,并构建了本构方程,分析了温度、应变速率和变形量对其微观组织的影响。结果表明:在热变形过程中,峰值应变会随着变形温度的降低或应变速率的增大而增大,不锈钢发生了动态再结晶,温度对动态再结晶的显微组织影响明显;在应变速率为1 s-1时,再结晶体积分数及晶粒尺寸最小;在低应变速率下变形时,再结晶组织容易出现混晶。通过θ-σ曲线确定了其临界应力与峰值应力、临界应变与峰值应变的关系。

 The thermal deformation behavior of 1Cr10Co6MoVNbN stainless steel under the temperature of 800-1100 ℃ and the strain rate of 0.01-10 s-1 was studied by thermal simulation experimental machine Gleeble-3500, and the stress-strain curve was obtained. Then, the constitutive equation was constructed, and the influences of temperature, strain rate and deformation amount on its microstructure were analyzed. The results show that during the thermal deformation process, the peak strain increases with the decreasing of deformation temperature or the increasing of strain rate, the dynamic recrystallization occurs, and the temperature has obvious influence on the microstructure of dynamic recrystallization. When the strain rate is 1 s-1, the recrystallization volume fraction and the grain size are the smallest. When deformed at low strain rate, the recrystallized structure is prone to mixed crystal. The relationships between critical stress and peak stress, and between critical strain and peak strain are determined by θ-σ curve, respectively. 

基金项目:
四川省重大科技专项项目(2022ZDZX0040)
作者简介:
张海成(1988-),男,硕士,高级工程师
参考文献:

 
[1]张慧萍,王崇勋,杜煦.飞机起落架用300M超高强钢发展及研究现状
[J].哈尔滨理工大学学报,2011,16(6):73-76.


Zhang H P, Wang C X, Du X. Development and research status of 300M ultra-high strength steel for aircraft landing gear
[J]. Journal of Harbin University of Technology, 2011, 16 (6): 73-76.


[2]李铭.大型飞机起落架制造技术
[J].航空制造技术,2008,318(21):68-71.

Li M. Large aircraft landing gear manufacturing technology
[J]. Aviation Manufacturing Technology, 2008,318(21): 68-71.


[3]宋春艳. 300M飞机起落架外筒锻件生产过程中关键技术研究
[D].秦皇岛:燕山大学,2014.

Song C Y. Study of the Key Technology of Producing for 300M Aircraft Landing Gear Outer Cylinder Forging
[D]. Qinhuangdao:Yanshan University, 2014.


[4]冯军.大型民机起落架的发展趋势与关键技术
[J].航空制造技术,2009,324(2):52-54,56.

Feng J. Development trend and key technologies of large civil aircraft landing gear
[J]. Aviation Manufacturing Technology, 2009, 324(2): 52-54,56.


[5]王瑞. 超高强度钢制备工艺的关键技术研究
[D].沈阳:东北大学,2017.

Wang R. Research on Key Technologies of Ultra-High Strength Steel Preparation Process
[D]. Shenyang:Northeast University, 2017.


[6]Luo J, Li M Q, Liu Y G, et al. The deformation behavior in isothermal compression of 300M ultrahigh-strength steel
[J]. Materials Science and Engineering A, 2012, 534(2):314-322.


[7]赵振业,李志,刘天琦,等.探索新强韧化机制开拓超高强度钢新领域
[J].中国工程科学,2003,(9):39-42,54.

Zhao Z Y, Li Z, Liu T Q,et al. Exploring a new strengthening and toughening mechanism and opening up a new field of ultra-high strength steel
[J]. China Engineering Science, 2003, (9): 39-42,54.


[8]李杰,李志,颜鸣皋.高合金超高强度钢的发展
[J].材料工程,2007,287(4):61-65.

Li J, Li Z, Yan M G. Development of high alloy ultra-high strength steel
[J]. Materials Engineering, 2007,287(4): 61-65.


[9]石旭. 300M超高强钢高温本构模型的研究
[D]. 哈尔滨:哈尔滨理工大学,2015.

Shi X. Research on Constitutive Model of 300M Ultra-High Strength Steel at High Temperature
[D]. Harbin:Harbin University of Science and Technology, 2015.


[10]章晓婷,黄亮,李建军,等.300M高强钢高温流变行为及本构方程
[J].中南大学学报:自然科学版,2017,48(6):1439-1447.

Zhang X T, Huang L, Li J J, et al. High temperature rheological behavior and constitutive equation of 300M high strength steel
[J]. Journal of Central South University:Science and Technology, 2017,48 (6): 1439-1447.


[11]祁荣胜,景阳端,刘鑫刚,等. 300M高强钢热变形行为及其热加工图
[J].塑性工程学报,2016,23(2):130-135.

Qi R S, Jing Y D, Liu X G, et al. Hot deformation behavior and hot working diagram of 300M high strength steel
[J]. Journal of Plasticity Engineering, 2016,23 (2): 130-135.


[12]黄顺喆,厉勇,王春旭,等.300M钢的热变形行为研究
[J].热加工工艺,2010,39(20):25-28.

Huang S Z, Li Y, Wang C X, et al. Study on the hot deformation behavior of 300M steel
[J]. Hot Working Technology, 2010, 39 (20): 25-28.


[13]赵明杰,邓磊,孙朝远,等. 300M高强钢大型构件全流程锻造变形机理及工艺研究进展
[J].科学通报,2022,67(11):1036-1053.

Zhao M J, Deng L, Sun C Y, et al. Research progress on deformation mechanism and process of full process forging of large 300M high-strength steel components
[J]. Chinese Science Bulletin, 2022,67 (11): 1036-1053.


[14]赵明杰,黄亮,李昌民,等. 300M钢的热变形行为及热锻成形工艺研究现状
[J].精密成形工程,2020,12(6):16-27.

Zhao M J, Huang L, Li C M, et al. Research status of the hot deformation behaviors and hot forging process of 300M steel
[J]. Journal of Netshape Forming Engineering, 2020, 12(6): 16-27.


[15]Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming
[J]. Journal of Materials Processing Technology, 2004, 152(2):136-143.


[16]Wanjara P, Jahazi M, Monajati H, et al. Hot working behavior of near-α alloy IMI834
[J]. Material Science Engineering A, 2005, 396(1-2):50-60.


[17]段园培,黄仲佳,余小鲁,等.基于摩擦修正的TB6合金流变应力行为研究及本构模型建立
[J].稀有金属,2014,38(2):202-209.

Duan Y P, Huang Z J, Yu X L, et al. Research on flow stress behavior of TB6 alloy based on friction correction and establishment of constitutive model
[J]. Chinese Journal of Rare Metals, 2014, 38 (2): 202-209.


[18]Sellars C M, Mctegart W J. On the mechanism of hot deformation
[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.


[19]Zener C, Hollomon J H . Effect of strain rate upon plastic flow of steel
[J]. Journal of Applied Physics, 1944, 15(1):22-32.


[20]薛小伟. 300M钢大型锻坯热成形工艺研究
[D].长沙:湖南大学,2019.

Xue X W. Research on Hot Forming Process of 300M Steel Large Forging Blank
[D].Changsha: Hunan University, 2019.


[21]Xia Y F, Long S, Wang T Y, et al. A study at the workability of ultra-high strength steel sheet by processing maps on the basis of DMM
[J]. High Temperature Materials and Processes, 2017, 36(7): 657-667.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9