网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
薄壁大尺寸铌铪合金零件强力旋压的数值模拟研究
英文标题:Numerical simulation study on power spinning for Nb-Hf alloy part with thin wall and large size
作者:闫静锴1 雒亚涛2 李冰2 关铂镔1 周兵营1 吴向东1 
单位:1.北京航空航天大学 机械工程及自动化学院 2.西安航天发动机有限公司 
关键词:NbHf10-1铌铪合金 强力旋压 贴模性 进给比 贴模间隙 
分类号:V261.3+3;TG386.3+2
出版年,卷(期):页码:2023,48(7):64-70
摘要:

 探究了工艺参数对薄壁大尺寸铌铪合金零件强力旋压工艺的影响规律,以指导实际的生产过程。在实际工艺的基础上,利用Abaqus/Explicit软件建立其强力旋压的有限元模型,并通过正交试验极差分析法对旋轮与芯模间隙、旋轮进给比以及旋轮与旋压件之间的摩擦因数等工艺参数对旋压件贴模性的影响规律进行研究。结果表明,强力旋压过程中旋轮进给比对旋压件贴模性的影响程度最大,而旋轮与芯模间隙的影响程度最小。对于薄壁大尺寸铌铪合金零件,当旋轮进给比为0.24 mm·r-1、旋轮与旋压件间的摩擦因数为0.05、旋轮与芯模间隙为3 mm时,强力旋压的贴模性最好,平均贴模间隙均值仅为1.003 mm。采用得到的工艺参数进行试验,进一步验证了有限元仿真分析的准确性。

 In order to explore the influence laws of process parameters on the power spinning process for Nb-Hf alloy part with thin wall and large size and further guide the actual production process, based on the actual process, the finite element model of power spinning was established by software Abaqus/Explicit, and the influence laws of process parameters such as gap between spinning wheel and core die, feeding ratio of spinning wheel and friction coefficient between spinning wheel and spun parts were studied by the range analysis method of orthogonal test. The results show that the feeding ratio of spinning wheel has the greatest influence on the die fittingness of spinning parts during the power spinning process, while the gap between spinning wheel and core die has the least influence. For the thin-walled and large-sized Nb-Hf alloy parts, when the feeding ratio of spinning wheel is 0.24 mm·r-1, the friction coefficient core between spinning wheel and spun parts is 0.05 and the gap between spinning wheel and core die is 3 mm, the power spinning has the best die fittingness, the average die fittingnesss gap is only 1.003 mm. The test with the obtained process parameters further verifies the correctness of the finite element simulation analysis.

基金项目:
作者简介:
作者简介:闫静锴(1998-),男,硕士研究生 E-mail:y390245543@163.com 通信作者:吴向东(1970-),男,博士,副教授 E-mail:xdwu@buaa.edu.cn
参考文献:

[1]曾向东.铌合金零件的强力旋压加工[J].精密成形工程,2014,6(2):24-31.


Zeng X D.Spinning processing of niobium alloy parts[J]. Journal of Netshape Forming Engineering, 2014,6(2):24-31.


[2]雒亚涛,翟宝力.薄壁大尺寸铌铪合金喷管精密旋压成形工艺研究[J].火箭推进,2016,42(6):68-73.


Luo Y T, Zhai B L.Research on precision spinningpressure forming process of largesice thinwalled nozzle made of niobium tungsten alloy[J]. Journal of Rocket Propulsion, 2016,42(6):68-73.


[3]杨锋,朱小兵,钟茵,.基于Vague集的强力旋压工艺参数优化[J].锻压技术,2021,46(1):110-115.


Yang F, Zhu X B, Zhong Yet al. Optimization on power spinning process parameters based on Vague set[J].Forging & Stamping Technology,2021,46(1):110-115.


[4]田野,张海峰,田维鑫.金属强力旋压成形的数值模拟分析[J].铸造技术,2015,36(1):191-194.


Tian Y, Zhang H F, Tian W X.Numerical simulation analysis of power spinning for metallic[J]. Foundry Technology,2015,36(1):191-194.


[5]曹振鹏,梁嵬,青格勒,.超大口径药形罩强力旋压应力应变场有限元分析[J].长春理工大学学报:自然科学版,2017,40(1):98-101.


 Cao Z P,Liang W,Qing G L,et al. Large diameter liner power spinning finite element analysis of stress and strain fields[J]. Journal of Changchun University of Science and Technology: Natural Science Edition,2017,40(1): 98-101.


[6]李帆,朱成成,申宇星,.大型筒体对轮强力旋压成形特征与规律研究[J].精密成形工程,2022,14(7):11-18.


 Li F, Zhu C C,Shen Y X,et al. Characteristics and rules of counterroller flowforming of large tube [J]. Journal of Netshape Forming Engineering, 2022,14(7):11-18.


[7]郝花蕾,杨文华,吉卫.3A21厚板强力旋压成形有限元模拟[J].锻压技术,2020,45(10):59-65.


 Hao H L,Yang W H, Ji W. Numerical simulation of power spinning for 3A21 thick plate[J].Forging & Stamping Technology,2020,45(10):59-65.


[8]杜驰,韩冬,李增辉,.D406A钢大直径圆筒强力旋压数值模拟研究[J].锻压装备与制造技术,2016,51(3):96-100.


 Du C, Han D, Li Z H, et al. Numerical simulation research of power spinning process for D406A steel large diameter cylinder[J]. China Metalforming Equipment & Manufacturing Technology, 2016,51(3): 96-100.


[9]Marghmaleki I S, Beni Y T, Noghrehabadi A R, et al. Finite element simulation of thermomechanical spinning process[J]. Procedia Engineering, 2011, 10: 3769-3774.


[10]吴统超,詹梅,蒋华兵,.旋压间隙对大型复杂薄壁壳体多道次旋压中第二道次成形质量的影响[J].西北工业大学学报,2011,29(1):74-81.


Wu T C, Zhan M, Jiang H B, et al. Exploring effect of spinning gap on forming quality of second pass spinning of largesized complicated thinwalled shell[J]. Journal of Northwestern Polytechnical University,2011,29(1):74-81.


[11]孙于晴,韩冬,杨延涛,.大直径30CrMnSiA筒形件对轮旋压成形过程的数值模拟[J].锻压装备与制造技术,2018,53(6):89-94.


Sun Y Q, Han D, Yang Y T, et al. Research on precision of spinning forming of large diameter 30CrMnSiA cylinder[J]. China Metalforming Equipment & Manufacturing Technology,2018,53(6):89-94.


[12]席奇豪,樊文欣,冯再新.毛坯尺寸对QSn7-0.2合金旋压筒形件性能及微观组织的影响[J].塑性工程学报,2020,27(4):48-52.


Xi Q H, Fan W X, Feng Z X. Influence of blank size on performance and microstructure of QSn7-0.2 alloy spinning cylinder parts[J].Journal of Plasticity Engineering,2020,27(4):48-52.


[13]詹梅,马上官.筒形件旋压有限元分析中芯模和旋轮相对运动的处理方法[J].精密成形工程,2011,3(6):107-111.


Zhan M, Ma S G. The Treatment of relative motion between mandrel and roller in numerical simulation for tube spinning[J]. Journal of Netshape Forming Engineering,2011,3(6):107-111.


(上接第56页)


[6]田晨晟.大型盲孔及半盲孔件自由锻方法分析及成形工艺研究[D]. 济南: 山东大学, 2020.


Tian C S. Free Forging Method Analysis and Forming Technology Research of Large Blind Hole and Semi Blind Hole Forgings[D]. Jinan: Shandong University, 2020.


[7]司家勇, 宋思远, 廖晓航,. DP工艺FH4169合金热加工高通量测试方法[J]. 中国有色金属学报, 2016,26(6): 1024-1213.


Si J Y, Song S Y, Liao X H, et a1. Highthrough put testing on hot working of deltaprocessed GH4169 alloy[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(6): 1024-1213.


[8]官英平, 王振华, 赵德利, . 高合金钢表面热锻开裂行为的物理模拟与数值模拟明[J]. 机械工程学报, 2010, 46(10): 59-63.


Guan Y P, Wang Z H, Zhao D L, et a1. Physical and numerical simulations of surface cracking behavior during hot forging for high alloy steel[J]. Journal of Mechanical Engineering, 2010, 46(10): 59-63.


[9]Teng Z H, Liao D M, Wu S C, et a1. An adaptively refined XFEM for the dynamic fracture problems with microdefects[J]. Theoretical and Applied Fracture Mechanics, 2019,103102255.


[10]路研. 新型超高强度钢的合金优化及其组织性能研究[D]. 昆明: 昆明理工大学, 2011.


Lu Y. Study on Alloy Optimization and Microstructure of New Super High Strength Steel[D]. Kunming: Kunming University of Science and Technology, 2011.


[11]董节功, 周旭东, 朱锦洪, . 径向锻造三维成形锻透性的数值模拟[J]. 机械工程材料, 2007, 31(3): 76-78.


Dong J G, Zhou X D, Zhu J H, et al. FEM simulatin of forging penetration efficiency of radial forging in 3D[J]. Material for Mechanical Engineering, 2007, 31(3): 76-78.


[12]咸业磊,髙锦张,王元华,等. 芯轴拔长接砧区域工艺参数的研究[J]. 机械设计与制造工程, 2014, 43(1): 10-14.


Xian Y L, Gao J Z, Wang Y H, et al. Research on the process parameters of mandrel drawing in Anvil’s connection area[J]. Machine Design and Manufacturing Engineering, 2014,43(1):10-14.


[13]陈英, 钟志平, 边翊, . 核电压力壳锻件芯轴拔长工艺V砧砧角的常温模拟研究[J]. 塑性工程学报, 2000, 7(3): 52-56.


Chen Y, Zhong Z P, Bian Y, et al. Modeling research on the anvil angle of mandral drawing for RPV forging at room temperature[J]. Journal of Plasticity Engineering, 2000, 7(3): 52-56.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9