网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
锆合金条带冲压成形的多目标工艺优化
英文标题:Optimization on multi-objective process for zirconium alloy strip stamping
作者:袁佳健1 毛建中2 张小民2 雷从一3 王犇4 
单位:1.湖南交通职业技术学院 机电工程学院 2.湖南大学 机械与运载工程学院 3.湖南工商大学 智能工程与智能制造学院 4.国核宝钛锆业股份公司 
关键词:锆合金条带 冲压成形 减薄开裂 弹簧 刚凸 
分类号:TG386
出版年,卷(期):页码:2023,48(7):93-99
摘要:

 为了降低锆合金条带冲压时的减薄开裂风险,针对条带级进冲压时其特征成形具有相同的冲压速度、压边力与摩擦因数的特点,建立条带的简化有限元模型,并通过物理试验对有限元模拟的准确性进行验证。利用支持向量机分别建立条带弹簧与刚凸特征的减薄率预测模型,针对条带整体成形减薄这一多目标问题,基于非支配排序遗传算法和熵权TOPSIS法,求得3种润滑条件下的Pareto前沿解和对应工艺参数的综合排序。结果表明:条带的刚凸特征相较于弹簧特征的减薄率对工艺参数的变化更敏感;不同润滑条件时条带的最优冲压工艺差异明显;常用无润滑条件下,冲压速度为134.41 mm·s-1、压边力为7862 N时,条带级进冲压具有最小的减薄开裂风险。

 In order to reduce the risk of thinning and cracking during stamping for zirconium alloy strips, for the strip progressive stamping, its feature forming has the same stamping speed, blank holder force and friction coefficient, a simplified finite element model of strip was established, and the accuracy of finite element simulation was verified by physical test. Then, support vector machine was used to establish thinning rate prediction models for strip spring and rigid convexity feature respectively, and aiming at the multi-objective problem of overall strip thinning during forming process, based on non-dominated sorting genetic algorithm and entropy weight TOPSIS method, the Pareto front solutions and the comprehensive ordering of corresponding process parameters under three lubrication conditions were calculated. The results show that the thinning rate of rigid convex feature for strip is more sensitive to the change of process parameters than that of spring feature, and the optimum stamping process of strip varies obviously under different lubrication conditions. Thus, under the common no-lubrication condition, when the stamping speed is 134.41 mm·s-1 and the blank holder force is 7862 N, the strip progressive stamping has the minimum risk of thinning and cracking.

基金项目:
湖南省教育厅资助科研项目(22C0951)
作者简介:
作者简介:袁佳健(1991-),男,硕士,工程师 E-mail:danny66163@163.com 通信作者:毛建中(1963-),男,博士,教授 E-mail:maojianzhong66@163.com
参考文献:

 [1]Kolesnik M, Aliev T, Likhanskii V. The modeling of the hydrogen solid solubility hysteresis in zirconium alloys[J]. Acta Materialia, 2019, 177:131-140.


[2]雷从一. 锆合金条带成形机理及冲制工艺优化[D]. 长沙:湖南大学, 2021.

Lei C Y. The Forming Mechanisms of Zirconium Alloy Strip and the Optimizations of the Stamping Process[D]. Changsha: Hunan University, 2021.

[3]邓振鹏. 新锆合金薄板带材的可冲性及冲制工艺优化[D]. 长沙:湖南大学, 2019.

Deng Z P. Punching Property and Punching Process Optimization of New Zirconium Alloy Sheet Strip[D]. Changsha: Hunan University, 2019.

[4]董晓传, 倪炀, 蔡玉俊, 等. 7075铝合金挡风梁热冲压成形减薄预测模型[J]. 中国有色金属学报, 2021, 31(3): 590-597.

Dong X C, Ni Y, Cai Y J, et al. Prediction model of hot stamping thinning of 7075 aluminum alloy windshield beam[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(3): 590-597.

[5]王康康, 陈泽中, 江楠森, 等. 基于GABP的汽车行李箱盖内板冲压成形工艺优化[J]. 塑性工程学报, 2021, 28(9): 28-34.

Wang K K, Chen Z Z, Jiang N S, et al. Process optimization of stamping forming for inner panel of car trunk lid based on GABP[J]. Journal of Plasticity Engineering, 2021, 28(9): 28-34.

[6]Lei C Y, Mao J Z, Zhang  X M, et al. Crack prediction in sheet forming of zirconium alloys used in nuclear fuel assembly by support vector machine method[J]. Energy Reports, 2021, 7, 5922-5932.

[7]庞秋, 罗博峰, 王俊杰. 高强钢帽形梁零件冲压减薄预测分析[J]. 精密成形工程, 2022, 14(4): 55-60.

Pang Q, Luo B F, Wang J J. Prediction and analysis of stamping reduction of high strength steel cap beam[J]. Journal of Netshape Forming Engineering, 2022, 14(4): 55-60.

[8]施为钟, 龚红英, 王斌, 等. 基于响应面法与 NSGAII的汽车C柱零件成形质量多目标优化[J]. 塑性工程学报, 2021, 28(8): 30-37.

Shi W Z, Gong H Y, Wang B, et al. Process optimization of stamping forming for inner panel of car trunk lid based on GABP[J]. Journal of Plasticity Engineering, 2021, 28(8): 30-37.

[9]杨旭静, 冯小龙, 郑娟, 等. SVM和改进粒子群算法在冲压成形优化中的应用[J]. 汽车工程, 2015, 37(4): 485-489.

Yang X J, Feng X L, Zheng J, et al. Applications of SVM and improved particle swarm algorithm to sheet metal forming optimization[J]. Automotive Engineering, 2015, 37(4): 485-489.

[10]王雷鸣, 尹升华,闫泽鹏,等.基于SVM的粗骨料膏体性能预测及优选方法[J].中国有色金属学报,2022,32(11):3517-3527.

Wang L M, Yin S H, Yan Z P, et al. Study of coarse aggregate paste performance prediction and proportioning optimization method based on SVM[J]. The Chinese Journal of Nonferrous Metals,2022,32(11):3517-3527.

[11]Bao L, Zheng M L,Zhou Q, et al.Multiobjective optimization of partition temperature of steel sheet by NSGAII using response surface methodology[J]. Case Studies in Thermal Engineering, 2022, 31:101818.

[12]易茜, 柳淳,李聪波,等.基于小样本数据驱动的滚齿工艺参数低碳优化决策方法[J].中国机械工程,2022,33(13):1604-1612.

Yi Q, Liu C, Li C B, et al. A low carbon optimization decision method for gear hobbing process parameters driven by small sample data[J]. China Mechanical Engineering, 2022, 33(13): 1604-1612.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9