网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
粉末压制中粉末形状对粉体力学行为的影响特种成形
英文标题:Influence of powder shape on mechanical behavior of powder in powder compaction
作者:张炜1 2 袁传牛1 2 萧伟健1 2 陈荣昕1 2 张宁1 2 刘焜3 
单位:1.福建工程学院 机械与汽车工程学院 2. 福建工程学院 福建省智能加工技术及装备重点实验室 3.合肥工业大学 摩擦学研究所 
关键词:粉末颗粒形状 粉末压制 离散元法 接触力 应力 
分类号:TF121
出版年,卷(期):页码:2023,48(7):138-148
摘要:

 针对粉末压制中的粉末形状与粉体力学行为的关联问题,基于离散单元法建立了铁基粉末的单轴压制模型,分析了压制中粉末形状对致密化特征、微观接触力以及宏观应力等力学行为的影响规律。结果表明:在压制过程中粉体的孔隙率随形状系数AR的减小而降低,配位数随形状系数AR的减小而增加。粉体接触力各向异性随形状系数AR的减小而逐渐增强,而各形状粉体的接触各向异性系数ac、an、at均经历从突增过渡到稳定阶段的变化过程。此外,粉体的压制应力快速增加阶段所占比例会随形状系数AR的减小而增大;粉末形状系数AR越小,体系内应力的分布范围越集中。将进一步拓展粉末压制中力学行为的研究理论基础,为改善粉末零件的致密性提供方法指引。

 For the relationship problem between powder shape and powder mechanical behavior in powder compaction, a uniaxial compaction model of iron-based powder was established based on discrete element method, and the influence laws of powder shape on mechanical behaviors such as densification characteristics, microscopic contact force and macroscopic stress during compaction process were analyzed. The results show that during the compaction process, the porosity of powder decreases with the decreasing of shape coefficient AR, and the coordination number increases with the decreasing of shape coefficient AR. The anisotropy of powder contact force gradually increases with the decrease of the shape coefficient AR, while the contact anisotropy coefficients ac, an and at of powders with various shapes all undergo a change process from a sudden increase to a stable stage. In addition, the proportion of rapid increase stage in the compression stress of powder increases with the decreasing of shape coefficient AR, and the smaller the powder shape coefficient AR, the more concentrated the distribution of the internal stress in the system. Thus, the research theoretical basis of the mechanical behavior in powder compaction is further expanded to provide method guidance for improving the compactness of powder parts.

基金项目:
国家自然科学基金资助项目(51975174);福建省自然科学基金资助项目(2020J01869)
作者简介:
作者简介:张炜(1991-),男,博士,讲师 E-mail:zw1256@fjut.edu.cn
参考文献:

[1]岳太文,刘旭辉,门正兴,等. 基于热模锻造的FGH96粉末冶金高温合金晶粒细化工艺[J]. 锻压技术,2021,46(10):19-24.


Yue T W, Liu X H, Men Z X, et al. Grain refinement process for power metallurgy superalloy FGH96 based on hot die forging[J]. Forging & Stamping Technology,2021,46(10):19-24.

[2]马春宇,陈湘平,肖志瑜,等. 装饰用316L不锈钢粉末高速压制成形过程中的孪晶行为[J]. 锻压技术,2022,47(8):130-137.

Ma C Y,Chen X P,Xiao Z Y,et al. Twinning behavior of 316L stainless steel powder for decoration during high velocity compaction forming process[J]. Forging & Stamping Technology,2022,47(8):130-137.

[3]叶先勇,刘京雷,徐宏,等.粉末粒径和压制压力对316L不锈钢多孔材料结构特性的影响[J].粉末冶金材料科学与工程,2013,18(3):409-414.

Ye X Y, Liu J L, Xu H,et al. Effects of powder size and molding pressure on structural characterization of 316L stainless steel porous material[J]. Materials Science and Engineering of Powder Metallurgy,2013,18(3):409-414.

[4]曹秒艳,董国疆,赵长财.基于离散元法的固体颗粒介质传力特性研究[J].机械工程学报,2011,47(14):62-69.

Cao M Y, Dong G J, Zhao C C. Research on pressuretransfer characteristics in the solid granule medium forming based on the discrete element method[J].Journal of Mechanical Engineering, 2011,47(14):62-69.

[5]Zhang H, Zhang L, Dong G,et al. Effects of warm die on high velocity compaction behaviour and mechanical properties of iron based PM alloy[J]. Powder Metallurgy,2016,59(2):100-106. 

[6]Cavarretta I, O′sullivan C. The mechanics of rigid irregular particles subject to uniaxial compression[J]. Géotechnique,2012,62(8):681-692. 

[7]Shinohara K, Oida M, Golman B. Effect of particle shape on angle of internal friction by triaxial compression test[J]. Powder Technology, 2000, 107(1-2):131-136. 

[8]Nouguierlehon C, Cambou B, Vinces E. Influence of particle shape and angularity on the behaviour of granular materials: A numerical analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2003,27(14):1207-1226.

[9]Yang J, Luo X D. Exploring the relationship between critical state and particle shape for granular materials[J]. Journal of the Mechanics and Physics of Solids,2015,8(1):196-213.

[10]黄培云. 粉末冶金原理[M]. 北京:冶金工业出版社, 2004.

Huang P Y. Theory of Power Metallurgy[M]. Beijing:Metallurgical Industry Press, 2004.

[11]Brika S E, Letenneur M, Dion C A,et al. Influence of particle morphology and size distribution on the powder flowability and laser powder bed fusion manufacturability of Ti6Al4V alloy[J]. Additive Manufacturing,2020,31:1-16.

[12]Haferkamp L, Haudenschild L, Spierings A,et al. The influence of particle shape, powder flowability, and powder layer density on part density in laser powder bed fusion[J]. Metals,2021,11(3):1-14.

[13]Jiang M J, Sima J, Li L Q,et al. Investigation of influence of particle characteristics on the noncoaxiality of anisotropic granular materials using DEM[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017,41(2):198-222.

[14]王蕴嘉,宋二祥,张千里.颗粒形状对堆石料力学特性影响的离散元分析[J].工程力学,2022,39(3):137-146.

Wang Y J, Song E X, Zhang Q L. Dem analysis of the aggregate shape effect on mechanical properties of rockfill[J]. Engineering Mechanics,2022,39(3):137-146.

[15]祁原,黄俊杰,陈明祥.可破碎颗粒体在动力载荷下的耗能特性[J].力学学报,2015,47(2):252-259.

Qi Y, Huang J J, Chen M X. Energy dissipation characteristics of crushable granules under dynamic excitations[J]. Chinese Journal of Theoretical and Applied Mechanics,2015,47(2):252-259.

[16]赵金凤,严颖,季顺迎.基于离散元模型的土石混合体直剪实验分析[J].固体力学学报,2014,35(2):124-134.

Zhao J F, Yan Y, Ji S Y. Analysis of direct shear test of soilrock mixture based on discrete element model[J]. Chinese Journal of Solid Mechanics, 2014,35(2):124-134.

[17]宗谨,周志刚,王文广,等.颗粒固体应力转向比的光弹法探测[J].物理学报,2017,66(10):177-184.

Zong J, Zhou Z G, Wang W G,et al. Janssen ratio in granular solid measured by photoelastic method[J]. Acta Physica Sinica,2017,66(10):177-184.

[18]Chen C Y, Xie Y C, Yan X C,et al. Effect of hot isostatic pressing (HIP) on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing[J]. Additive Manufacturing,2019,27:595-605.

[19]李强,张学华,程思海,等.高压粉末制样-X射线荧光光谱法测定富钴结壳样品中20种组分[J].冶金分析,2021,41(4):20-26.

Li Q, Zhang X H, Cheng S H,et al. Determination of twenty components in cobaltrich crust samples by Xray fluorescence spectrometry with highpressure powder pelleting preparation [J]. Metallurgical Analysis,2021,41(4):20-26.

[20]Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Géotechnique,1979,29(1):47-65.

[21]Mindlin R D, Deresiewicz H. Elastic spheres in contact under varying oblique forces[J]. Journal of Applied Mechanics,1953, 20: 327-344.

[22]张炜.金属粉末高速压制中多尺度力学特性及致密化机制[D]. 合肥:合肥工业大学,2019 

Zhang W. Multiscale Mechanics and Mechanism of Densification in High Velocity Compaction of Metal Powder[D]. Hefei: Hefei University of Technological,2019.

[23]Nouri A, Sola A. Metal particle shape: A practical perspective[J].Metal Powder Report, 2018,73 (5):276-282.

[24]Song P, Cheng J, Wan L,et al. Preparation and characterization of Mo15 Cu superfine powders by a gelatificationreduction process[J]. Journal of Alloys and Compounds,2009,476(1-2):226-230. 

[25]Sadeghi B, Cavaliere P. Progress of flake powder metallurgy research[J]. Metals,2021,11(6):931-945. 

[26]Altuhafi F, O′sulivan C, Cavarretta I. Analysis of an imagebased method to quantify the size and shape of sand particles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(8): 1290-1307. 

[27]Zhang W, Zhang S, Tan J J,et al. Investigation on the friction mechanism and its relation to the force chains during powder compaction[J]. Journal of the Physical Society of Japan,2020,89(12):1-9.

[28]Zhang N, Zhang S, Tan J J,et al. Correlation mechanism between force chains and friction mechanism during powder compaction[J]. Chinese Physics B,2022, 31(2):486-496.

[29]王飞.粉末材料压制过程中阻塞现象研究[D]. 合肥:合肥工业大学,2014.

Wang F. Research on Jamming Phenomenon in Powder Material Compaction[D]. Hefei:Hefei University of Technological,2014.

[30]Heckel R W. Densitypressure relationships in powder compaction[J]. Transactions of the Metallurgical Society of AIME,1961,221(4):671-675.

[31]Dong S C, Qiu F C, Lei P,et al. Evaluation and parameter analysis of compaction equations applied to titanium powder[J]. Powder Metallurgy,2022,65(3):181-199.

[32]何咏睿,朱晟,武利强.粗粒料二维与三维孔隙率的对应关系研究[J].水力发电,2014,40(5):27-29,47.

He Y R, Zhu S, Wu L Q. Research on the corresponding relationship between twodimensional porosity and threedimensional porosity of coarse materials[J]. Water Power,2014,40(5):27-29,47.

[33]王海陆,刘军,林立,等.基于离散元的不同粒径配比粉末压制相对密度与力链分析[J].粉末冶金技术,2021,39(6):490-498.

Wang H L, Liu J, Lin L,et al. Compacting relative density and force chain analysis of powders with different particle size ratios based on discrete element[J]. Powder Metallurgy Technology, 2021,39(6):490-498.

[34]丁朋辉.热复合磁脉冲粉末致密实验研究[D]. 哈尔滨:哈尔滨工业大学,2007.

Ding P H. Experimental Research on the Powder Compacts Prepared by Magnetic Pulse and Heating[D]. Harbin: Harbin Institute of Technology,2007.

[35]Radjai F, Wolf D E, Jean M,et al. Bimodal character of stress transmission in granular packings[J]. Physical Review Letters,1998,80(1):61-64.

[36]Wu W, Ma G, Zhou W,et al. Force transmission and anisotropic characteristics of sheared granular materials with rolling resistance[J]. Granular Matter,2019,21 (88):1-18.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9