网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
激光选区熔化成形不锈钢板材内部缺陷无损检测可靠性分析
英文标题:Reliability analysis on non-destructive testing for internal defects of stainless steel sheet formed by laser selective melting
作者:刘春华1 门正兴2 李艳丽3 陈晓辉1 张宏4 
单位:1.中国空气动力研究与发展中心 设备设计与测试技术研究所 2.成都航空职业技术学院 机电工程学院 3.四川工程职业技术学院 材料工程系 4.四川大学 建筑与环境学院 破坏力学与工程防灾减灾四川省重点实验室 
关键词:激光选区熔化 304L不锈钢 内部缺陷 无损检测 适应性 
分类号:TG316
出版年,卷(期):页码:2023,48(7):212-221
摘要:

 为验证不同无损检测方法对激光选区熔化(SLM)成形不锈钢材料内部缺陷检测的适应性,分别采用X射线数字成像检测(DR)、工业计算机层析成像检测(CT)、相控阵超声检测(PAUT)和超声检测(UT)等对SLM成形不锈钢梯形板(厚度为11~20 mm)开展检测。实验结果表明:CT的灵敏度最高,能够检测出15.58 μm的内部自然孔隙缺陷,达到了10 μm 级;PA及直接接触法UT可以检测出毫米级的面积型缺陷;DR对SLM不锈钢梯形板面积型缺陷不敏感。另外,水浸法UT结果表明,通过提升探头频率来提高UT的灵敏度是比较有限的,探头频率超过10 MHz即难以实施有效检测。金相分析结果验证了CT、PA和UT的可靠性,SLM不锈钢梯形板中存在直径为Φ20~Φ100 μm的单独气孔和裂纹缺陷,同时也存在局部区域1 mm左右的密集型缺陷。

 In order to verify the adaptability of different non-destructive testing methods to the detection of internal defects for stainless steel materials formed by selective laser melting(SLM), the SLM formed stainless steel trapezoidal plate (thickness of 11-20 mm) was tested by X-ray digital radiogrophy (DR), industrial computed tomography (CT) testing, phased array ultrasonic testing (PAUT), and ultrasonic testing (UT), etc. The experimental results show that CT has the highest sensitivity and can detect internal natural pore defects of 15.58 μm, reaching the level of 10 μm. PA and direct contact method UT can detect millimeter-scale area defects. DR is not sensitive to area defects of SLM stainless steel trapezoidal sheet. In addition, the results of the water immersion method UT show that it is relatively limited to improve the sensitivity of UT by increasing the probe frequency, and it is difficult to implement effective detection when the probe frequency exceeds 10 MHz. The metallographic analysis results verify the reliability of CT, PA and UT. There are individual pores with the diameter of Φ20-Φ100 μm and defect cracks in the SLM stainless steel trapezoidal sheet, and there are also dense defects of about 1 mm in the local area.

基金项目:
国家自然科学基金面上项目(12272245);四川省应用基础研究项目(2022NSFSC0324);四川大学-自贡政府战略合作支持项目 (2019CDZG-4)
作者简介:
作者简介:刘春华(1986-),男,硕士,工程师 E-mail:huagongren001@163.com
参考文献:

[1]Sun Q D, Sun J, Guo K, et al. Compressive mechanical properties and energy absorption characteristics of SLM fabricated Ti6Al4V triply periodic minimal surface cellular structures[J]. Mechanics of Materials, 2022, 166:104241.1-104241.14.


[2]Wang J B, Zhou X L, Li J H. Evolution of microstructures and properties of SLMmanufactured Cu15Ni8Sn alloy during heat treatment[J]. Additive Manufacturing, 2021,37:101599.

[3]Gunasekaran J, Sevvel P, John Solomon I. Metallic materials fabrication by selective laser melting: A review[J]. Materials Today: Proceedings, 2021, 37:252-256.

[4]辛艳喜, 蔡高参, 胡彪, 等. 3D打印主要成形工艺及其应用进展[J]. 精密成形工程, 2021, 13(6): 156-164.

Xin Y X, Cai G S, Hu B, et al. Recent development of main process types of 3D printing technology and application[J]. Journal of Netshape Forming Engineering, 2021,13(6):156-164.

[5]Martin J, Yahata B, Hundley J, et al. 3D printing of highstrength aluminium alloys[J]. Nature, 2017, 549: 365-369.

[6]白晶斐, 马亚鑫, 陈晓辉, 等. 激光选区熔化成形18Ni300工艺参数优化及组织性能分析[J]. 精密成形工程, 2022, 14(4): 162-168.

Bai J F, Ma Y X, Chen X H, et al. Optimization of process parameters and analysis of microstructure and properties of 18Ni300 by laser selective melting[J]. Journal of Netshape Forming Engineering, 2022, 14(4): 162-168.

[7]李艳丽, 魏继业, 马亚鑫, 等. 扫描速度对激光选区熔化成形304L不锈钢板材高温持久性能的影响[J].精密成形工程, 2022, 14(9): 111-118.

Li Y L, Wei J Y, Ma Y X, et al. Effect of scanning speed on high temperature durability performance of 304L stainless steel by selective laser melting[J]. Journal of Netshape Forming Engineering, 2022, 14(9):111-118.

[8]胡平, 艾琳, 邱梓妍, 等. 金属增材制造构件的激光超声无损检测研究进展[J]. 中国激光, 2022, 49(14): 297-308.

Hu P, Ai L, Qu Z Y, et al. Laser ultrasonic nondestructive testing on metal additive manufacturing components[J]. Chinese Journal of Lasers, 2022, 49(14): 297-308.

[9]彭乐, 郑志军. 激光选区熔化成形金属件的缺陷类型及表征方法概述[J]. 材料导报, 2023, 37(8): 21050053.

Peng Y, Zhen Z J. Review of the categories and characterization methods of defects in alloy prepared by selective laser melting[J]. Materials Reports, 2023, 37(8): 21050053.

[10]郭伟玲, 李恩重, 邢志国. 工业CT成像技术在再制造界面典型缺陷研究中的应用与展望[J]. 无损检测, 2021, 43(4): 82-88. 

Guo W L, Li E Z, Xing Z G. Application and prospect of industrial CT imaging technology in remanufacturing interface typical defects research[J]. Nondestructive Testing, 2021, 43(4): 82-88.

[11]Gong H J, Nadimpalli V K, Rafi K, et al. MicroCT evaluation of defects in Ti6Al4V parts fabricated by metal additive manufacturing[J]. Technologies, 2019, 7(2): 44-44.

[12]Bi Z, Li Y T, Qian B. Erratum to: Defect formation mechanisms in selective laser melting: A review[J]. Chinese Journal of Mechanical Engineering, 2017, 30(6):1476-1476.

[13]Xue Z Y. Experiment and simulation of fatigue crack growth of SLM nickel base superalloy with different stress ratios and building directions[J]. IOP Conference Series: Materials Science and Engineering, 2019,490(3).

[14]阮雪茜, 林鑫, 黄春平, 等. TC4激光立体成形显微组织对超声参量的影响[J]. 中国激光, 2015,42(1):138-142.

Ruan X Q, Lin X, Huang C P, et al. Effect of microstructure of laser solid forming TC4 titanium alloy on ultrasonic parameters[J]. Chinese Journal of Lasers, 2015,42(1):138-142.

[15]胡婷萍, 高丽敏, 杨海楠. 航空航天用增材制造金属结构件的无损检测研究进展[J]. 航空制造技术, 2019, 62(8): 70-75,87.

Hu T P, Gao L M, Yang H N. Application of nondestructive testing techniques on additive manufacturing in aerospace fields[J]. Aeronautical Manufacturing Technology, 2019, 62(8): 70-75,87.

[16]张祥林,姜迎春,张祥春, 等.激光选区熔化增材制造构件工业CT检测方法研究[J].无损探伤,2020,44(3):34-36.

Zhang X L, Jiang Y C, Zhang X C,  et al. Research on industrial ct inspection method of laser selective melting additive manufacturing components[J]. Nondestructive Testing Technology, 2020,44(3):34-36.

[17]杨薇, 王栋, 张强虎, 等. 燃油喷嘴激光选区熔化成型的内部缺陷控制与检测方法研究[J]. 热加工工艺, 2021, 50(6): 54-58.

Yang W, Wang D, Zhang Q H, et al. Study on internal defects control and detection method of selective laser melting of fuel nozzle[J]. Hot Working Technology, 2021, 50(6): 54-58.

[18]张吴双. 激光增材制造金属构件内部缺陷控制与无损检测特性研究[J]. 铸造技术, 2021, 42(5): 346-349.

Zhang W S. Study on Internal defect control and nondestructive testing characteristics of metal components formed by laser additive manufacturing[J]. Foundry Technology, 2021, 42(5): 346-349.

[19]帅三三, 刘伟, 王江, 等. 无损检测在增材制造技术中的应用研究进展[J]. 科技导报, 2020, 38(2): 26-34.

Shuai S S, Liu L, Wang J, et al. Application of nondestructive testing in additive manufacturing technique[J]. Science & Technology Review, 2020, 38(2): 26-34.

[20]李文涛, 周正干. 激光增材制造钛合金构件的阵列超声检测方法研究[J]. 机械工程学报, 2020, 56(8): 141-147.

Li W T, Zhou Z G. Research on ultrasonic array testing methods of laser additivemanufacturing titanium alloy[J]. Journal of Mechanical Engineering, 2020, 56(8): 141-147.

[21]NB/T 47013.5—2015,承压设备无损检测 第5部分:渗透检测[S].

NB/T 47013.5—2015,Nondestructive testing of pressure equipments—Part 5:Penetrant testing[S].

[22]NB/T 47013.5-2015,承压设备无损检测 第11部分:X射线数字成像检测[S]. 

NB/T 47013.5-2015,Nondestructive testing of pressure equipments—Part 11: Digital radiography [S].

[23]GB/T 29070—2012,无损检测 工业计算机层析成像(CT)检测 通用要求[S].

GB/T 29070—2012,Nondestructive testing—Industrial computed tomography (CT) testing—General requirements[S].

[24]NB/T 47013.15—2021,承压设备无损检测 第15部分:相控阵超声检测[S].

NB/T 47013.15—2021,Nondestructive testing of pressure equipments—Part 15: Phasedarray ultrasonic testing[S].

[25]NB/T 47013.3—2015,承压设备无损检测 第3部分:超声检测[S]. 

NB/T 47013.5—2015,Nondestructive testing of pressure equipments—Part 3: Ultrasonic testing[S].

[26]GJB 1580A—2004,变形金属超声检测方法[S]. 

GJB 1580A—2004,Ultrasonic inspection of wrought metal[S].

[27]GB/T 226—2015,钢的低倍组织及缺陷酸蚀检验法[S].

GB/T 226—2015,Test method for macrostructure and defect of steel by etching[S].
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9