网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
20碳钢/316L不锈钢复合材料热压缩试验与有限元模拟
英文标题:Hot compression test and finite element simulation on 20 carbon steel/316L stainless steel composite material
作者:胡建华 王小花 陈建勋 桂海莲 杨晟 李靖 
单位:太原科技大学 材料科学与工程学院 
关键词:碳钢/不锈钢 复合材料 热压缩 应变 应力 微观组织 
分类号:TG335.5+9
出版年,卷(期):页码:2023,48(7):222-227
摘要:

 对20碳钢/316L不锈钢复合材料在Gleeble-3500热模拟试验机上进行了热压缩试验,并结合DEFORM3D有限元软件分析了应变变化趋势和微观结构演变规律,建立了其Arrhenius本构模型。试验过程中碳钢体积占2/3,不锈钢体积占1/3,应变速率为0.1~10 s-1,变形温度为1000~1100 ℃。通过比较模拟和试验结果,发现碳钢与不锈钢双金属材料的应力-应变曲线与试验结果存在一定的比例关系而且复合材料中间区域的变形量大于两端。通过模拟可得出整体过程中不锈钢的平均晶粒比碳钢大。由于试验结果跟模拟结果存在一定的差别,在物块外表面不能明确看出物体内部是否存在变化,因此本模拟是有必要的。

 For the 20 carbon steel/316L stainless steel composite material, the hot compression test was conducted by Gleeble-3500 thermal simulation testing machine combined with finite element software DEFORM-3D, the strain change trend and microstructure evolution laws were analyzed, and the Arrhenius constitutive model was established. During the test, the volume of carbon steel accounted for 2/3, the volume of stainless steel accounted for 1/3, the strain rate was 0.1-10 s-1, and the temperature was 1000-1100 ℃. By comparing the simulation and test results, it is found that there is a certain proportional relationship between the stress-strain curves of carbon steel and stainless steel bimetallic materials and the test results, and the deformation amount in the middle region of the composite material is greater than that at both ends. Through the simulation, it can be concluded that the average grain size of stainless steel is larger than that of carbon steel during the overall process. Due to certain differences between the test results and the simulation results, whether there is a change inside the object cannot be clearly seen on the outer surface of the object. So this simulation is necessary. 

基金项目:
山西省自然科学基金资助项目(202203021221158);山西省重点研发计划(201903D121049)
作者简介:
作者简介:胡建华(1977-),女,博士,副教授 E-mail:2005022@tyust.edu.cn 通信作者:王小花(1998-),女,硕士研究生 E-mail:S202114210083@stu.tyust.edu.cn
参考文献:

[1]宋仁伯,项建英,刘良元,等.316L不锈钢的热变形抗力模型[J].机械工程材料,2010,34(6):85-88.


Song R B, Xiang J Y, Liu L Y, et al. Thermal deformation resistance model of 316L stainless steel[J]. Materials for Mechanical  Engineering,2010,34(6):85-88.

[2]魏栋,楚志兵,黄庆学,等.基于DEFORM3D的皮尔格冷轧不锈钢管有限元模拟及分析[J].塑性工程学报,2016,23(5):89-95.

Wei D, Chu Z B, Huang Q X, et al. Finite element simulation and analysis of pilger cold rolled stainless steel pipe based on DEFORM3D[J].Journal of Plasticity Engineering,2016, 23 (5): 89-95.

[3]韩栋,赵永庆.曾卫东,等.基于元胞自动机的TA15板材累积叠轧微观组织预测[J].稀有金属材料和工程,2021,50(10):3437-3445.

Han D, Zhao Y Q, Zeng W D, et al. Microstructures prediction of TA15 sheet rolling based on cellular automata [J]. Rare Metal Materials and Engineering, 2021,50(10):3437-3445.

[4]Wang S, Zhao G H, Li Y G,et al. Effect of different reduction rates on the nearinterfacial structure of pressed 304/Q235 composite plate[J].Materials Research Express,2020,7(6): 066531.

[5]黄晓斌.冶金复合无缝钢管在工业管道中的应用[J].特钢技术,2013, 19(1):1-5,18.

Huang X  B. Application of metallurgical composite seamless steel pipe in industrial pipeline[J]. Special Steel Technology,2013, 19(1):1-5,18.

[6]Liu B X, An Q, Yin F X, et al. Interface formation and bonding mechanisms of hotrolled stainless steel clad plate[J]. Journal of Materials Science,2019,54:11357-11377.

[7]Yang X W,Li W Y,Feng Y, et al. Physical simulation of interfacial microstructure evolution for hot compression bonding behavior in linear friction welded joints of GH4169 superalloy[J]. Materials & Design,2016,104:436-452.

[8]杨韵琴,张文玮,谭元标,等.TB8钛合金热压缩过程中动态再结晶组织的模拟[J].热处理,2021,36(4): 6-11.

Yang Y Q, Zhang W W, Tan Y B, et al. Simulation of dynamic recrystallization microstructure of TB8 titanium alloy during hot compression [J]. Heat Treatment,2021,36(4):6-11.

[9]王海宁,李萍,张清.Mg5Sm2Gd合金的热压缩行为[J/OL].稀土:1-7[2023-04-14].DOI:10.16533/J. CNKI.15-1099/TF.20230013.

Wang H N, Li P, Zhang Q. Hot compression behavior of Mg5Sm2Gd alloy [J/OL]. Chinese Rare Earths:1-7[2023-04-14].DOI:10.16533/J.CNKI.15-1099/TF.20230013.

[10]王天胜,李鑫,鲁世强,等.TC21钛合金热压缩失稳变形组织模拟和预测[J].塑性工程学报,2016,23(5):144-148.

Wang T S, Li X, Lu S Q, et al. Simulation and prediction of deformation microstructure of TC21 titanium alloy under hot compression [J]. Journal of Plasticity Engineering, 2016, 23 (5):144-148.

[11]梅瑞斌,史现利,包立,等.不同加热轧制 AZ91 镁合金带材数值模拟及试验验证[J].中国冶金,2022,32(1):112-120. 

Mei R B, Shi X L, Bao L, et al. Numerical simulation and experimental verification of AZ91 magnesium alloy strip rolling under different heating conditions [J]. China Metallurgy, 2022,32(1):112-120.

[12]Hu J H, Yang S, Huang Y L, et al. A new correction theory and verification on the reducing rate distribution for seamless tube stretchreducing process[J].Crystals,2022,12(9):1296-1296.

[13]吕泽华,Agamuradov D,张志雄,等.热轧双覆层不锈钢 /碳钢复合板组织与性能研究[J].塑性工程学报,2020,27(7): 168-175.

Lyu Z H,Agamuradov D,Zhang Z X,et al. Research on microstructure and properties of double cladding stainless steel/carbon steel clad plate by hot rolling [J].Journal of Plasticity Engineering,2020,27(7): 168-175.

[14]Yang Y H, Jiang Z Z, Li S X, et al. Hot deformation behavior and microstructure evolution of stainless steel/carbon steel laminated composites[J].Materials Science and Engineering A,2022,(842):142994.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9