[1]郑寅岚, 何艳丽, 陈晓晖,等. 选区激光熔化成形GH3536合金的高温拉伸性能及断裂行为分析[J]. 中国激光, 2020, 47(8):106-115.
Zheng Y L, He Y L, Chen X H, et al. Elevatedtemperature tensile properties and fracture behavior of GH3536 alloy formed via selective laser melting[J]. Chinese Journal of Lasers,2020, 47(8):106-115.
[2]孙闪闪, 滕庆, 程坦,等. 热处理对激光选区熔化GH3536合金组织演变规律的影响研究[J]. 机械工程学报,2020, 56(21): 208-218.
Sun S S, Teng Q, Cheng T, et al. Influence of heat treatment on microstructure evolution of GH3536 superalloy fabricated by selective laser melting [J]. Journal of Mechanical Engineering,2020, 56(21): 208-218.
[3]薛珈琪, 陈晓晖, 雷力明. 激光选区熔化GH3536合金组织对力学性能的影响[J]. 激光与光电子学进展, 2019, 56(14): 163-169.
Xue J Q, Chen X H, Lei L M. Effects of microstructure on mechanical properties of GH3536 alloy fabricated by selective laser melting [J]. Laser & Optoelectronics Progress,2019, 56(14): 163-169.
[4]Konda G P, Sri K, Jürgen E. Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting-Selection guidelines[J]. Materials, 2017, 10(6):672-672.
[5]Ma P, Jia Y, Prashanth K G, et al. Microstructure and phase formation in Al20Si5Fe3Cu1Mg synthesized by selective laser melting[J]. Journal of Alloys and Compounds, 2016, 657: 430-435.
[6]Sanz C, Navas V G. Structural integrity of direct metal laser sintered parts subjected to thermal and finishing treatments[J]. Journal of Materials Processing Technology, 2013, 213(12): 2126-2136.
[7]Bertrand P. Parametric analysis of the selective laser melting process[J]. Applied Surface Science, 2007, 253: 8064-8069.
[8]Trosch T, Strosner J, Volkl R, et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting[J]. Materials Letters, 2016, 164: 428-431.
[9]解文龙,蒋为豪,邓偲瀛,等. 汽车发动机用铸造铝合金热压缩变形行为及唯象本构方程[J]. 塑性工程学报, 2020, 27(9): 147-152.
Xie W L, Jiang W H, Deng S Y, et al. Hot compression deformation behavior and phenomenological constitutive equation of cast aluminum alloy for automobile engine [J]. Journal of Plasticity Engineering, 2020, 27(9): 147-152.
[10]Liu Y, Li M, Ren X W, et al. Flow stress prediction of Hastelloy C276 alloy using modified ZerilliArmstrong, JohnsonCook and Arrheniustype constitutive models [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(11): 3031-3042.
[11]冯怡爽, 何霁, 韩国丰,等. 金属板材塑性本构关系的深度学习预测方法及建模[J]. 塑性工程学报, 2021, 28(6): 34-46.
Feng Y S, He J, Han G F, et al. Deep learning predicting method and modeling of plastic constitutive relation of sheet metal [J]. Journal of Plasticity Engineering,2021, 28(6): 34-46.
[12]何龙, 张冉阳, 赵刚要,等. 基于BP神经网络的GH5188高温合金本构模型[J]. 特种铸造及有色合金, 2021, 41(2): 223-226.
He L, Zhang R Y, Zhao G Y, et al. Constitutive model of GH5188 superalloy based on BP neural network [J]. Special Casting & Nonferrous Alloys, 2021, 41(2): 223-226.
[13]刘昭昭, 王淼, 刘延辉. 镍基高温合金GH4133B本构模型及热加工图的热模拟研究[J]. 航空材料学报, 2021, 41(6): 44-50.
Liu Z Z,Wang M, Liu Y H. Analysis of deformation behavior and microstructure evolution for GH4133B superalloy based on isothermal compression test [J]. Journal of Aeronautical Materials, 2021, 41(6): 44-50.
[14]罗锐, 陈乐利, 程晓农,等. 高温合金Inconel 617B的热变形及动态再结晶行为[J]. 压力容器, 2020, 37(10): 7-14.
Luo R, Chen L L, Cheng X N, et al. Thermal deformation and dynamic recrystallization behavior of inconel 617B superalloy [J]. Pressure Vessel Technology, 2020, 37(10): 7-14.
|