网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
选区激光熔化GH3536高温合金高温本构模型
英文标题:High temperature constitutive model for superalloy GH3536 by selective laser melting
作者:白洁1 马瑞1 王亚军1 李庆华2 
单位:1. 北京动力机械研究所 2. 西北工业大学 材料科学与工程学院 
关键词:GH3536高温合金 选区激光熔化 本构方程 Arrhenius模型 塑性变形 
分类号:TG142.1
出版年,卷(期):页码:2023,48(7):234-241
摘要:

 为研究选区激光熔化高温合金在高温下的塑性变形行为,对选区激光熔化制备的热等静压态GH3536高温合金进行热模拟压缩试验,获得了不同变形条件(变形温度为900、950、1000和1050 ℃;应变速率为0.01、0.1、1和10 s-1)下的高温真应力-真应变曲线,研究了该材料在高温条件下的载荷响应规律,并建立了基于Arrhenius方程的材料高温本构模型。研究发现,峰值应力随着应变速率的升高而升高,随着变形温度的升高而降低,最大峰值应力为592.8 MPa。基于Arrhenius方程建立了HIP状态下GH3536高温合金的高温本构方程,其预测精度的平均相对误差(AARE)为9.42%。通过组织观察发现,在高温变形过程中合金的组织被拉长,材料中有明显发生动态再结晶的迹象。

 To study the plastic deformation behavior of selective laser melting superalloy at high temperature, the thermal simulation compression test of HIP state superalloy GH3536 prepared by selective laser melting was carried out, and the true stress-true strain curves at high temperature under different deformation conditions (the deformation temperatures of 900, 950, 1000 and 1050 ℃ and the strain rates of 0.01, 0.1, 1 and 10 s-1) were obtained. Then, the load response laws of the material under high temperature conditions were studied, and the high temperature constitutive model of the material based on Arrhenius equation was established. The results show that the peak stress increases with the increasing of strain rate and decreases with the increasing of deformation temperature, and the maximum peak stress is 592.8 MPa. Based on Arrhenius equation, the high temperature constitutive equation for superalloy GH3536 in HIP stabe is established, which can predict the stress of the material well, and the average relative error of the overall prediction is 9.42%. Through microstructure observation, it is found that the microstructure of the alloy is elongated during high temperature deformation process, the obvious trace of dynamic recrystalization con be observed.

基金项目:
国家重点研发计划(2018YFB1106405)
作者简介:
作者简介:白洁(1988-),男,博士,高级工程师 E-mail:baishuai031@163.com
参考文献:

[1]郑寅岚, 何艳丽, 陈晓晖,等. 选区激光熔化成形GH3536合金的高温拉伸性能及断裂行为分析[J]. 中国激光, 2020, 47(8):106-115.


Zheng Y L, He Y L, Chen X H, et al. Elevatedtemperature tensile properties and fracture behavior of GH3536 alloy formed via selective laser melting[J]. Chinese Journal of Lasers,2020, 47(8):106-115.

[2]孙闪闪, 滕庆, 程坦,等. 热处理对激光选区熔化GH3536合金组织演变规律的影响研究[J]. 机械工程学报,2020, 56(21): 208-218.

Sun S S, Teng Q, Cheng T, et al. Influence of heat treatment on microstructure evolution of GH3536 superalloy fabricated by selective laser melting [J]. Journal of Mechanical Engineering,2020, 56(21): 208-218.

[3]薛珈琪, 陈晓晖, 雷力明. 激光选区熔化GH3536合金组织对力学性能的影响[J]. 激光与光电子学进展, 2019, 56(14): 163-169.

Xue J Q, Chen X H, Lei L M. Effects of microstructure on mechanical properties of GH3536 alloy fabricated by selective laser melting [J]. Laser & Optoelectronics Progress,2019, 56(14): 163-169.

[4]Konda G P, Sri K, Jürgen E. Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting-Selection guidelines[J]. Materials, 2017, 10(6):672-672.

[5]Ma P, Jia Y, Prashanth K G, et al. Microstructure and phase formation in Al20Si5Fe3Cu1Mg synthesized by selective laser melting[J]. Journal of Alloys and Compounds, 2016, 657: 430-435.

[6]Sanz C, Navas V G. Structural integrity of direct metal laser sintered parts subjected to thermal and finishing treatments[J]. Journal of Materials Processing Technology, 2013, 213(12): 2126-2136.

[7]Bertrand P. Parametric analysis of the selective laser melting process[J]. Applied Surface Science, 2007, 253: 8064-8069.

[8]Trosch T, Strosner J, Volkl R, et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting[J]. Materials Letters, 2016, 164: 428-431.

[9]解文龙,蒋为豪,邓偲瀛,等. 汽车发动机用铸造铝合金热压缩变形行为及唯象本构方程[J]. 塑性工程学报, 2020, 27(9): 147-152.

Xie W L, Jiang W H, Deng S Y, et al. Hot compression deformation behavior and phenomenological constitutive equation of cast aluminum alloy for automobile engine [J]. Journal of Plasticity Engineering, 2020, 27(9): 147-152.

[10]Liu Y, Li M, Ren X W, et al. Flow stress prediction of Hastelloy C276 alloy using modified ZerilliArmstrong, JohnsonCook and Arrheniustype constitutive models [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(11): 3031-3042.

[11]冯怡爽, 何霁, 韩国丰,等. 金属板材塑性本构关系的深度学习预测方法及建模[J]. 塑性工程学报, 2021, 28(6): 34-46.

Feng Y S, He J, Han G F, et al. Deep learning predicting method and modeling of plastic constitutive relation of sheet metal [J]. Journal of Plasticity Engineering,2021, 28(6): 34-46.

[12]何龙, 张冉阳, 赵刚要,等. 基于BP神经网络的GH5188高温合金本构模型[J]. 特种铸造及有色合金, 2021, 41(2): 223-226.

He L, Zhang R Y, Zhao G Y, et al. Constitutive model of GH5188 superalloy based on BP neural network [J]. Special Casting & Nonferrous Alloys, 2021, 41(2): 223-226.

[13]刘昭昭, 王淼, 刘延辉. 镍基高温合金GH4133B本构模型及热加工图的热模拟研究[J]. 航空材料学报, 2021, 41(6): 44-50.

Liu Z Z,Wang M, Liu Y H. Analysis of deformation behavior and microstructure evolution for GH4133B superalloy based on isothermal compression test [J]. Journal of Aeronautical Materials, 2021, 41(6): 44-50.

[14]罗锐, 陈乐利, 程晓农,等. 高温合金Inconel 617B的热变形及动态再结晶行为[J]. 压力容器, 2020, 37(10): 7-14.

Luo R, Chen L L, Cheng X N, et al. Thermal deformation and dynamic recrystallization behavior of inconel 617B superalloy [J]. Pressure Vessel Technology, 2020, 37(10): 7-14.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9