[1]丁青青,贝红斌,赵新宝,等.透射电子显微学在镍基单晶高温合金领域的应用进展和展望[J].电子显微学报,2020,39(5):586-602.
Ding Q Q, Bei H B, Zhao X B, et al. Application of the transmission electron microscopy on Nibase single crystal superalloys:Progress and prospective[J]. Journal of Chinese Electron Microscopy Society,2020,39(5):586-602.
[2]Jing Z, Zheng C, Du X, et al. Characterization of lattice defects for L12Ni3Al involving the ordering process via the microscopic phase field method[J]. Superlattices & Microstructures, 2012, 52(4):834-843.
[3]Griffith A A. The phenomena of rupture and flows in solids[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1921,221(582):163-198.
[4]Anderson T L. Fracture Mechanics: Fundamentals and Applications[M]. 3rd Eidition. Boca Raton (FL): CRC Press, 2005.
[5]Vehoff H, Neumann P. In situ SEM experiments concerning the mechanism of ductile crack growth[J]. Acta Metallurgica, 1979, 27(5):915-920.
[6]单智伟, 杨继红, 刘路, 等. 单晶Ni3Al裂纹扩展的TEM原位观察[J]. 金属学报, 2000,36(3):263-267.
Shan Z W, Yang J H, Liu L, et al. In situ TEM investigation of crack propagation in single crystal Ni3Al [J]. Acta Metallurgica Sinica, 2000,36(3):263-267.
[7]徐永波, 张静华. Ni3Al单晶裂纹扩展行为的TEM动态观察[A].大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集[C]. 深圳,2007.
Xu Y B, Zhang J H. TEM dynamic observation of crack propagation behavior of Ni3Al single crystal[A]. Highlevel Forum on Key Technologies of Large Aircraft and Proceedings of the 2007 Academic Annual Conference of the Chinese Aeronautical Society[C]. Shenzhen,2007.
[8]朱健, 张志豪, 谢建新. 基于原位TEM拉伸的稀土H13钢塑性形变行为和断裂机制[J]. 金属学报, 2020, 56(12):26-38.
Zhu J, Zhang Z H, Xie J X. Plastic deformation behavior and fracture mechanism of rare earth H13 steel based on in situ TEM tensile study[J]. Acta Metallurgica Sinica, 2020,56(12):26-38.
[9]Tommaso B, Giovanni C, Gianluigi M, et al. Molecular dynamics recipes for genome research[J]. Briefings in Bioinformatics, 2017,19(5):853-862.
[10]Liang Y C, Wang Q L, Chen J X, et al. Molecular dynamics simulation research in water adsorption on aluminum surface[J]. Key Engineering Materials, 2013, 562-565:1308-1313.
[11]Ohta Y, Ohta K, Kinugawa K. Unified quantum molecular dynamics method based on centroid molecular dynamics and semiempirical molecular orbital theory[J]. International Journal of Quantum Chemistry, 2010, 95(4-5):372-379.
[12]Zhang Y, Shi X F, Liu C Q. Molecular dynamics research of G249 and S249 substitutions of P53 protein[J]. Progress in Biochemistry & Biophysics, 2000, 27(4):382-386.
[13]Rafii Tabar H, Shodja H M, Darabi M, et al. Molecular dynamics simulation of crack propagation in FCC materials containing clusters of impurities[J]. Mechanics of Materials, 2006, 38(3):243-252.
[14]Cao L X, Wang C Y. Molecular dynamics simulation of fracture in α-iron α-Fe molecular dynamics study of cracks [J]. Acta Physica Sinica, 2007, 56(1):413-422.
[15]Xu S W, Deng X M. Nanoscale void nucleation and growth and crack tip stress evolution ahead of a growing crack in a single crystal[J]. Nanotechnology, 2008, 19(11):115705.
[16]Xie H X, Wang C Y. Dislocation formation and twinning from the crack tip in Ni3Al: Molecular dynamics simulations[J]. Chinese Physics B, 2009,18(1):252-258.
[17]Xie H X, Liu B, Yu T. Atomistic simulation of microtwinning at the crack tip in L12 Ni3Al[J]. Philosophical Magazine,2012, 92(12):1542-1553.
[18]Xie H X, Tao Y, Yin F X, et al. The effects of crack orientation on the twin formation from the crack tip in γ′Ni3Al[J]. Materials Science and Engineering: A, 2013, 580(15):99-104.
[19]Wu W P, Yao Z Z. Sample size dependence of cracktip microstructure and stress evolutions in single crystal nickel[J]. Computer Modeling in Engineering and Sciences, 2013, 93(4):235-252.
[20]Wu W P, Yao Z Z. Molecular dynamics simulation of stress distribution and microstructure evolution ahead of a growing crack in single crystal nickel[J]. Theoretical & Applied Fracture Mechanics, 2012, 62:67-75.
[21]马磊, 李长生, 郭杰荣. 不同温度下Ni3Al中疲劳裂纹扩展机理的原子模拟[J]. 西南师范大学学报:自然科学版, 2020, 45(7):56-61.
Ma L, Li C S, Guo J R. Atomic simulation of fatigue crack propagation at different temperature in Ni3Al[J].Journal of Southwest China Normal University: Natural Science Edition, 2020, 45(7):56-61.
[22]Abraham F F, Walkup R, Gao H J,et al. Simulating materials failure by using up to one billion atoms and the world′s fastest computer: Brittle fracture[J]. Proceedings of the National Academy of Sciences, 2002,99(9):5777-5782
[23]Silva A, Gren J, Clavaguera-Mora M T, et al. Applications of computational thermodynamics-The extension from phase equilibrium to phase transformations and other properties[J]. Calphadcomputer Coupling of Phase Diagrams & Thermochemistry, 2007, 31(1):53-74.
[24]王宝奇, 谷南驹, 郭素珍, 等. Bain对应和KS模型的数学描述[J]. 金属学报, 2002, 38(5):474-487.
Wang B Q, Gu N J, Guo S Z, et al. Mathematical description of Bain correspondence and KS model[J]. Acta Metallurgica Sinica,2002, 38(5):474-487.
|