网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
单晶Ni3Al裂纹扩展行为的分子动力学模拟
英文标题:Molecular dynamics simulation on crack propagation behavior for single crystal Ni3Al
作者:杜春志1 庞帅2 吴文平3 刘兵飞4 
单位:1.中国民航大学 交通科学与工程学院 2.中国民航大学 航空工程学院 3.武汉大学 土木建筑工程学院 4.中国民航大学 科技创新研究院 
关键词:分子动力学 裂纹扩展 微观机制 单晶Ni3Al 位错 应力集中 
分类号:V252
出版年,卷(期):页码:2023,48(7):255-263
摘要:

 基于嵌入原子势的分子动力学模拟分析了单晶Ni3Al的裂纹扩展机理和显微组织演化。首先,通过设置初始裂纹并对拉伸速率恒定时的单晶Ni3Al模型进行单轴拉伸,模拟了裂纹尖端的形状和微观结构的变化,从模拟结果可以观察到在裂纹尖端产生了位错堆积现象,扩展后的裂纹方向与位错线成45°和135°夹角。其次,分别讨论了温度对5×10-11 s时裂纹尖端应力集中现象、屈服点的抗拉强度以及裂纹扩展速率的影响。研究结果表明:当温度从300 K升温至1300 K时,5×10-11 s时裂纹尖端的应力值以线性的形式降低;其屈服点抗拉强度的降低趋势也是线性的,但其应变值增加;高温可有效地减缓裂纹扩展速率。

The crack propagation mechanism and microstructure evolution of single crystal Ni3Al were analyzed by molecular dynamics simulations based on embedded atomic potential. Firstly, by setting up an initial crack and uniaxially stretching the single crystal Ni3Al model at a constant stretching rate, the changes in the shape and microstructure of crack tip were simulated, from the simulation results, it was observed that the dislocation accumulation phenomenon was generated at the crack tip, and the extended crack direction and the dislocation line formed angles of 45° and 135°. Secondly, the influences of temperature on the stress concentration at the crack tip, the tensile strength at the yield point and the crack propagation rate at 5×10-11 s were discussed respectively. The research results show that when the temperature increases from 300 K to 1300 K, the stress value at the crack tip decreases linearly at 5×10-11 s, and the decreasing trend of the tensile strength at the yield point is also linear, but the strain value increases. Thus, high temperature can effectively slow down the crack propagation rate.

基金项目:
中央高校基本科研业务费中国民航大学专项资助项目(3122015C018);2021天津市研究生科研创新项目(2021YJS080)
作者简介:
作者简介:杜春志(1981-),男,博士,副教授 E-mail:czdu@cauc.edu.cn 通信作者:刘兵飞(1985-),男,博士,副教授 E-mail:bingfeiliu2@126.com
参考文献:

 [1]丁青青,贝红斌,赵新宝,等.透射电子显微学在镍基单晶高温合金领域的应用进展和展望[J].电子显微学报,2020,39(5):586-602.


Ding Q Q, Bei H B, Zhao X B, et al. Application of the transmission electron microscopy on Nibase single crystal superalloys:Progress and prospective[J]. Journal of Chinese Electron Microscopy Society,2020,39(5):586-602.

[2]Jing Z, Zheng C, Du X, et al. Characterization of lattice defects for L12Ni3Al involving the ordering process via the microscopic phase field method[J]. Superlattices & Microstructures, 2012, 52(4):834-843.

[3]Griffith A A. The phenomena of rupture and flows in solids[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1921,221(582):163-198.

[4]Anderson T L. Fracture Mechanics: Fundamentals and Applications[M]. 3rd Eidition. Boca Raton (FL): CRC Press, 2005.

[5]Vehoff H, Neumann P. In situ SEM experiments concerning the mechanism of ductile crack growth[J]. Acta Metallurgica, 1979, 27(5):915-920.

[6]单智伟, 杨继红, 刘路, 等. 单晶Ni3Al裂纹扩展的TEM原位观察[J]. 金属学报, 2000,36(3):263-267.

Shan Z W, Yang J H, Liu L, et al. In situ TEM investigation of crack propagation in single crystal Ni3Al [J]. Acta Metallurgica Sinica, 2000,36(3):263-267.

[7]徐永波, 张静华. Ni3Al单晶裂纹扩展行为的TEM动态观察[A].大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集[C]. 深圳,2007.

Xu Y B, Zhang J H. TEM dynamic observation of crack propagation behavior of Ni3Al single crystal[A]. Highlevel Forum on Key Technologies of Large Aircraft and Proceedings of the 2007 Academic Annual Conference of the Chinese Aeronautical Society[C]. Shenzhen,2007.

[8]朱健, 张志豪, 谢建新. 基于原位TEM拉伸的稀土H13钢塑性形变行为和断裂机制[J]. 金属学报, 2020, 56(12):26-38.

Zhu J, Zhang Z H, Xie J X. Plastic deformation behavior and fracture mechanism of rare earth H13 steel based on in situ TEM tensile study[J]. Acta Metallurgica Sinica, 2020,56(12):26-38.

[9]Tommaso B, Giovanni C, Gianluigi M, et al. Molecular dynamics recipes for genome research[J]. Briefings in Bioinformatics, 2017,19(5):853-862.

[10]Liang Y C, Wang Q L, Chen J X, et al. Molecular dynamics simulation research in water adsorption on aluminum surface[J]. Key Engineering Materials, 2013, 562-565:1308-1313.

[11]Ohta Y, Ohta K, Kinugawa K. Unified quantum molecular dynamics method based on centroid molecular dynamics and semiempirical molecular orbital theory[J]. International Journal of Quantum Chemistry, 2010, 95(4-5):372-379.

[12]Zhang Y, Shi X F, Liu C Q. Molecular dynamics research of G249 and S249 substitutions of P53 protein[J]. Progress in Biochemistry & Biophysics, 2000, 27(4):382-386.

[13]Rafii Tabar H, Shodja H M, Darabi M, et al. Molecular dynamics simulation of crack propagation in FCC materials containing clusters of impurities[J]. Mechanics of Materials, 2006, 38(3):243-252.

[14]Cao L X, Wang C Y. Molecular dynamics simulation of fracture in α-iron α-Fe molecular dynamics study of cracks [J]. Acta Physica Sinica, 2007, 56(1):413-422.

[15]Xu S W, Deng X M. Nanoscale void nucleation and growth and crack tip stress evolution ahead of a growing crack in a single crystal[J]. Nanotechnology, 2008, 19(11):115705.

[16]Xie H X, Wang C Y. Dislocation formation and twinning from the crack tip in Ni3Al: Molecular dynamics simulations[J]. Chinese Physics B, 2009,18(1):252-258.

[17]Xie H X, Liu B, Yu T. Atomistic simulation of microtwinning at the crack tip in L12 Ni3Al[J]. Philosophical Magazine,2012, 92(12):1542-1553.

[18]Xie H X, Tao Y, Yin F X, et al. The effects of crack orientation on the twin formation from the crack tip in γ′Ni3Al[J]. Materials Science and Engineering: A, 2013, 580(15):99-104.

[19]Wu W P, Yao Z Z. Sample size dependence of cracktip microstructure and stress evolutions in single crystal nickel[J]. Computer Modeling in Engineering and Sciences, 2013, 93(4):235-252.

[20]Wu W P, Yao Z Z. Molecular dynamics simulation of stress distribution and microstructure evolution ahead of a growing crack in single crystal nickel[J]. Theoretical & Applied Fracture Mechanics, 2012, 62:67-75.

[21]马磊, 李长生, 郭杰荣. 不同温度下Ni3Al中疲劳裂纹扩展机理的原子模拟[J]. 西南师范大学学报:自然科学版, 2020, 45(7):56-61.

Ma L, Li C S, Guo J R. Atomic simulation of fatigue crack propagation at different temperature in Ni3Al[J].Journal of Southwest China Normal University: Natural Science Edition, 2020, 45(7):56-61.

[22]Abraham F F, Walkup R, Gao H J,et al. Simulating materials failure by using up to one billion atoms and the world′s fastest computer: Brittle fracture[J]. Proceedings of the National Academy of Sciences, 2002,99(9):5777-5782

[23]Silva A, Gren J, Clavaguera-Mora M T, et al. Applications of computational thermodynamics-The extension from phase equilibrium to phase transformations and other properties[J]. Calphadcomputer Coupling of Phase Diagrams & Thermochemistry, 2007, 31(1):53-74.

[24]王宝奇, 谷南驹, 郭素珍, 等. Bain对应和KS模型的数学描述[J]. 金属学报, 2002, 38(5):474-487.

Wang B Q, Gu N J, Guo S Z, et al. Mathematical description of Bain correspondence and KS model[J]. Acta Metallurgica Sinica,2002, 38(5):474-487.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9